首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method has been developed for the trace determination of two sunscreen constituents (2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid) in water samples, which are commonly used in commercial formulations. The method employs solid-phase microextraction (SPME) and gas chromatography with flame ionization and mass spectrometric detection. The technique was developed with headspace and direct sampling in order to demonstrate the applicability of these SPME extraction modes for the identification of these two UV absorbing compounds in waters. The main parameters affecting the SPME process, such as desorption time, extraction time profile, salt additives, pH, and temperature, were investigated. The poly(dimethylsiloxane) 100-microm and polyacrylate 85-microm fiber coatings were found to be the most efficient for the extraction of these compounds from aqueous matrices. Linear calibration curves in the wide range of 10-500 microg/l were obtained for both compounds yielding typical RSD values of 5-9% for both extraction modes. The recoveries were relatively high, 82-98%, with quantitation limits below 1 microg/l. A comparison between the proposed methods and the conventional multiresidue solid-phase extraction revealed that the proposed technique(s) can be reliably used for sunscreen residue measurement in water samples with satisfactory results.  相似文献   

2.
The application of a manual operated solid-phase microextraction (SPME)-HPLC interface is discussed for the analysis of thermally labile analytes in aqueous matrices. The technique has been applied on-site at a flooded rice field to demonstrate its potential for real time extraction of the herbicide profoxydim. Thus, compounds which would otherwise easily degrade in the aqueous matrices within hours or days could be determined more accurately. The fibers were shipped back to the laboratory with express delivery where the target analyte was desorbed from the fiber and determined by HPLC-UV analysis. The SPME method was characterized by significant ruggedness where conventional techniques such as liquid-liquid extraction and solid-phase extraction require additional shipping and handling costs and time-consuming multiple sample preparation steps. In general, any delay in shipping the aqueous samples to the laboratory has the potential for sample degradation and a loss in accuracy when using non on-site extraction techniques. Fifty microm Carbowax-templated resin coatings were most suitable for coupling SPME to HPLC in order to achieve a high sensitivity for polar analytes. The SPME technique was characterized by a good sensitivity and a precision less than 10% RSD. The SPME-LC-UV method was linear over at least three orders of magnitude while achieving a limit of detection in the lower microg/l range. The on-site SPME method has shown significantly increased accuracy. Profoxydim was determined at concentrations of ca. 180 microg/l 3 h after an application on a flooded bare soil field.  相似文献   

3.
Solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) has been applied to determine six phthalate esters and one adipate ester in water. The SPME parameters were optimized for several commercially available fibers. A 65-microm polydimethylsiloxane-divinylbenzene (PDMS-DVB) was the fiber selected and was applied to analysis of water from the Ebro river and the industrial port of Tarragona. The studied compounds were found at concentrations ranging from 0.4 microg l(-1) for di-n-butyl phthalate ester (DnBP) to 3.2 microg l(-1) for bis(2-ethylhexyl) phthalate ester (DEHP). The linear range for real samples was from 0.1 to 10 microg l(-1) for most phthalates, and the limits of detection of the method were between 3 and 30 ng l(-1). Repeatability and reproducibility between days (n = 5) for 1 microg l(-1) samples were below 13 and 18%, respectively.  相似文献   

4.
The objective this study was to compare the official EU liquid-liquid extraction (LLE) method with solid-phase microextraction (SPME) for the analysis of compounds migrating from cross-linked polyethylene into water. A medium polarity polydimethylsiloxane/divinylbenzene (PDMS/DVB) 65 microm fibre proved most efficient for the SPME extraction of nine test compounds and the optimum extraction conditions were an immersion time of 30 min with heating to 60 degrees C. The repeatability of the SPME method was variable: RSD values ranged from approximately 4-18% depending on the individual compound, though correlation coefficients were greater than 0.999 in the concentration range 0.5-1000 microg/l. It would also seem that there is some competition amongst different compounds for sites on the fibre and this is a potential drawback of SPME when applied to unknown samples. However, when applied to water samples in contact with polyethylene, SPME proved to be immensely more sensitive and to have a greater extraction range than LLE. These factors coupled with the rapidity and ease of use of SPME mean that it could be developed for use as an alternative to the existing official method or as an alert system in the routine analysis of materials used to transport domestic water.  相似文献   

5.
A direct solid-phase microextraction (SPME) procedure has been developed and applied for the simultaneous determination of nonylphenol, nonylphenol mono- and diethoxylates and their brominated derivatives in raw and treated water at low microg l(-1) concentrations. Several parameters affecting the SPME procedure, such as extraction mode (headspace or direct-SPME), selection of the SPME coating, extraction time, addition of organic modifiers such as methanol and temperature were optimized. The divinylbenzene-carboxen-polydimethylsiloxane fiber was the most appropriate one for the determination of nonylphenol ethoxylates (NPEOs) and bromononylphenol ethoxylates (BrNPEOs) by SPME-GC-MS. The optimized method was linear over the range studied (0.11-2.5 microg l(-1)) and showed good precision, with RSD values between 4 and 15% and detection limits ranging from 30 to 150 ng l(-1) depending on the compound. The SPME procedure was compared with a solid-phase extraction-GC-MS method (C18 cartridge) for the analysis of NPEO and BrNPEOs in water samples. There was good agreement between the results from both methods but the SPME procedure showed some advantages such as lower detection limits, a shorter analysis time and the avoidance of organic solvents. The optimized SPME method was applied to determine nonylphenol and brominated metabolites in raw and treated water of Barcelona (NE Spain).  相似文献   

6.
A method based on solid-phase microextraction (SPME) and gas chromatography with flame ionization detection (GC-FID) has been optimized for the determination of benzene, toluene, ethylbenzene and xylenes (BTEX) in water released from a waste treatment plant. The extraction step was optimized using fractional factorial and central composite designs including the following experimental factors: saline concentration; extraction time; desorption time; agitation velocity; headspace volume. A multiple function was used to describe the experimental conditions for simultaneous extraction of the compounds. The procedure, based on direct SPME at 50 degrees C, using a polydimethylsiloxane fiber, showed good linearity (r>0.997 over a concentration range 2-200 microg L(-1)) and repeatability (relative standard deviation (RSD)<4.23%) for all compounds, with limits of detection ranging from 0.05 to 0.28 microg L(-1), and limits of quantification ranging from 0.14 to 0.84 microg L(-1). Concentrations of the target compounds in these samples were between 145.8 and 1891 microg L(-1).  相似文献   

7.
The aim of this study was to develop a methodology for the analysis of the insecticide fenitrothion and its two main environmental metabolites, fenitrooxon and 3-methyl-4-nitrophenol. For this purpose, a solid-phase microextraction (SPME) method coupled to high performance liquid chromatography (LC) was optimized. Two on-line detectors, diode array (DAD) and direct current amperometrical (DCAD) were used in order to determine sensitivity and selectivity. The effects of the extraction parameters, including exposure and desorption time, pH, temperature, salt concentration and desorption mode on the extraction efficiency were studied. A satisfactory reproducibility for extractions from samples at 20 ppb-level with RSD < 12.5% (n = 10) was obtained. The calibration graphs were linear in the range of 10-1000 microg l(-1) and detection limits for the target compounds were between 1.2 and 11.8 microg l(-1) depending on which detector was used. The method was applied for determining fenitrothion and both its metabolites in river waters which run through forest areas near to aerial application of the pesticide.  相似文献   

8.
This study develops a method for the analysis of biocides Irgarol 1051 and Sea Nine 211 in environmental water samples, using solid-phase microextraction (SPME). Their determination was carried out using gas chromatography with flame thermionic (FTD), electron-capture (ECD) and mass spectrometric detection. The main parameters affecting the SPME process such as adsorption-time profile, salt additives and memory effect were studied for five polymeric coatings commercially available for solid-phase microextraction: poly(dimethylsiloxane) (100 and 30 microm), polyacrylate, poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB 65 microm) and Carbowax-divinylbenzene (65 microm). The method was developed using spiked natural waters such as tap, river, sea and lake water in a concentration range of 0.5-50 microg/l. All the tested fiber coatings have been evaluated with regard to sensitivity, linear range, precision and limits of detection. Typical RSD values (triplicate analysis) in the range of 3-10% were obtained depending on the fiber coating and the compound investigated. The recoveries of biocides were in relatively high levels 60-118% and the calibration curves were reproducible and linear (R2>0.990) for both analytes. The SPME partition coefficients (Kf) of both compounds were also calculated experimentally in the proposed conditions for all fibers using direct sampling. Finally the influence of organic matter such as humic acids on extraction efficiency was studied, affecting mostly Sea Nine 211 uptake by the fiber. Optimum analytical SPME performance was achieved using the PDMS-DVB 65 microm fiber coating in ECD and FTD systems for Sea Nine 211 and Irgarol 1051, respectively.  相似文献   

9.
Solid-phase microextraction (SPME) with an 85 microm polyacrylate fiber, coupled to gas chromatography-mass spectrometry was used to determine six phthalate esters and bis(2-ethylhexyl) adipate in water samples. The variables affecting the SPME absorption process were optimized and the method developed was applied to analyze both tap and commercial mineral water samples as well as water from the Ebro river and fishing and industrial ports. For real samples, the linear range in full scan acquisition mode was between 0.02 and 10 microg l(-1) for most compounds, and the limits of detection of the method were between 0.006 and 0.17 microg l(-1). Commercial water samples contained in recipients which were made from different materials were analyzed, and the influence of the material of the recipients on the concentration of phthalates was evaluated.  相似文献   

10.
A study of organic compounds imparting sweet and buttery odor problems in the Llobregat River (northeast Spain) and in treated water was conducted. Solid-phase microextraction (SPME), gas chromatography-olfactometry, and flavor profile analysis (FPA) were used as analytical methodologies to identify the compound responsible for odor incidents. 2,3-Butanedione (diacetyl) with a concentration range of 0.90-26 microg/l in river water samples entering the water treatment plant was identified as the compound causing the odor events. Flavor profile analysis establishes 0.05 microg/l as its odor threshold concentration (OTC) in water, with an odor recognition concentration of 0.20 microg/l. The analyses were carried out with SPME-GC-MS and parameters affecting SPME extraction such as selection of the fiber (carboxen-polydimethylsiloxane), extraction time (30 min), temperature (60 degrees C), and ionic strength were evaluated. Quality parameters of the optimized method gives good linearity (r2 > 0.999), a limit of detection (0.08 microg/l) similar to the OTC of the compound, and good reproducibility (R.S.D. < 20%). The SPME method was applied to identify the compound causing the odor.  相似文献   

11.
This study presents a method based on the use of multiple headspace solid-phase microextraction (MHS-SPME) for the quantitative analysis of 4-ethylphenol, 4-ethylguaiacol, 4-vinylphenol and 4-vinylguaiacol. MHS-SPME is a modification of SPME that implies several consecutive extractions from the same sample and avoids possible matrix effects. This study demonstrates the existence of a matrix effect in the analysis of compounds responsible for Brett character in wine when an HS-SPME based method is used with a carbowax/divinylbenzene (CW/DVB) fibre. For this reason, MHS-SPME is proposed as an alternative technique with respect to HS-SPME. The method proposed was validated and the detection limits obtained were 0.06 microg/l for 4-ethylguaiacol and 4-ethylphenol and, 0.20 microg/l for 4-vinylguaiacol and 0.12 microg/l for 4-vinylphenol. These detection limits are below the odour detection thresholds of the compounds in wine matrices. The repeatability obtained, in terms of relative standard deviation (RSD), was considered acceptable, ranging from 1 to 12%. To evaluate the applicability of the proposed MHS-SPME method, concentration results were compared with those obtained with the standard addition method, and the results were similar with both methods. Furthermore, the new method was satisfactorily applied to a number of commercial red, white and rosé wines. Therefore, MHS-SPME can be considered as an alternative to avoid the matrix effect in wine samples.  相似文献   

12.
A novel solid-phase microextraction (SPME) setup, circulating cooling solid-phase microextraction (CC-SPME), is developed for determining organochlorine pesticides (OCPs) in water. The linearity area of this method is 0.5-120 microg/l, its RSD value is less than 10% and detection limit is in the low ng/l when it is used to detect gamma-hexachlorocyclohexane, which is better than traditional headspace SPME (HS-SPME) and direct immersion SPME (DI-SPME) methods. The influence of factors such as pH, ionic intensity, adsorption time, and adsorption temperature were also investigated, respectively.  相似文献   

13.
A novel solid-phase microextraction (SPME) method coupled to gas chromatography with electron capture detection (GC-ECD) was developed as an alternative to liquid-liquid and solid-phase extraction for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples. The extraction efficiency of five different commercially available fibres was evaluated and the 100-microm polydimethylsiloxane coating was the most suitable for the absorption of the SCCPs. Optimisation of several SPME parameters, such as extraction time and temperature, ionic strength and desorption time, was performed. Quality parameters were established using Milli-Q, tap water and river water. Linearity ranged between 0.06 and 6 microg l(-1) for spiked Milli-Q water and between 0.6 and 6 microg l(-1) for natural waters. The precision of the SPME-GC-ECD method for the three aqueous matrices was similar and gave relative standard deviations (RSD) between 12 and 14%. The limit of detection (LOD) was 0.02 microg l(-1) for Milli-Q water and 0.3 microg l(-1) for both tap water and river water. The optimised SPME-GC-ECD method was successfully applied to the determination of SCCPs in river water samples.  相似文献   

14.
A headspace solid-phase microextraction (HS-SPME) procedure has been developed and applied for the determination of cyanogen halides in treated water samples at microg/L concentrations. Several SPME coatings were tested, the divinylbenzene-Carboxen-polydimethylsiloxane fiber being the most appropriate coating. GC-electron-capture detection was used for separation and quantitation. Experimental parameters such as sample volume, addition of a salt, extraction time and desorption conditions were studied. The optimized method has an acceptable linearity, good precision, with RSD values <10% for both compounds, and it is sufficiently sensitive to detect ng/L levels. HS-SPME was compared with liquid-liquid microextraction (US Environmental Protection Agency Method 551.1) for the analysis of spiked ultrapure and granular activated carbon filtered water samples. There was good agreement between the results from both methods. Finally, the optimized procedure was applied to determine both compounds at the Barcelona water treatment plant (N.E. Spain). Cyanogen chloride in treated water was <1.0 microg/L and cyanogen bromide ranged from 3.2 to 6.4 microg/L.  相似文献   

15.
魏黎明  李菊白  王国俊  欧庆瑜 《色谱》2004,22(4):435-438
采用物理涂渍的方法制备了γ-Al2O3固相微萃取涂层。通过γ-Al2O3固相微萃取(SPME)-气相色谱(GC)联用技术,对水中痕量苯系物苯、甲苯、乙苯、二甲苯异构体(BTEXs)进行萃取分析,结果表明该涂层具有热稳定性强(最高使用温度可达350 ℃)、灵敏度高(检测限为1~10 μg/L)以及制备重复性好(相对标准偏差为8.3%)的特点;同时该涂层对气态基质中的污染物亦可进行萃取分析。  相似文献   

16.
This study develops a method for the analysis of seven fungicides in environmental waters, using solid-phase microextraction (SPME). The analyzed compounds--dicloran, chlorothalonil, vinclozolin, dichlofluanid, captan, folpet and captafol--belong to different classes of chemical compound (chloroanilines, sulphamides, phthalimides and oxazolidines) and are used mainly in agriculture and as antifouling paints. Their determination was carried out by gas chromatography with electron-capture and mass spectrometric detection. To perform SPME, four types of fibre have been assayed and compared: polyacrylate (85 microm), polydimethylsiloxane (100 and 30 microm), carbowax-divinylbenzene (CW-DVB 65 microm) and polydimethylsiloxane-divinylbenzene (65 microm). The main parameters affecting the SPME process such as pH, salt additives, methanol content, memory effect, stirring rate and adsorption-time profile were studied. The method was developed using spiked natural waters such as ground water, sea water, river water and lake water in a concentration range of 0.1-10 microg/l. Limits of detection of studied compounds were determined in the range of 1-60 ng/l, by using electron-capture and mass spectrometric detectors. The recoveries of all fungicides were in relatively high levels (70.0-124.4%) and the average R2 values of the calibration curves were above 0.990 for all the analytes. The SPME conditions were finally optimized in order to obtain the maximum sensitivity. The potential of the proposed method was realized by applying it to the trace-level screening determination of fungicides and antifouling compounds in sea water samples originating from various Greek marinas.  相似文献   

17.
A solid-phase microextraction (SPME) followed by a gas chromatographic-mass spectrometric (GC-MS) determination has been developed and validated for the determination of cyprodinil and fludioxonil in white wine samples. Extraction parameters such as the selection of SPME coating, the effect of the temperature, the effect of the headspace volume and the salt addition were studied and optimized, together with GC-MS analytical conditions. The divinylbenzene-Carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fiber was the most appropriate for the determination of the two pesticides in wine. The quality parameters of the proposed method demonstrated a good precision (RSD about 5%), with detection limits of 0.1 and 0.2 microg/l for cyprodinil and fludioxonil, respectively. Fifteen commercial white wine samples produced in Rías Baixas area in Galicia (N.W. Spain) were analyzed with the SPME-GC-MS procedure. Some of the commercial wines (75%) presented the two pesticides in concentrations ranging from 0.9 to 28.6 microg/l. In conclusion, SPME-GC-MS has a great potential for fungicide determination in wines.  相似文献   

18.
An analytical scheme for the determination of several organochlorine pesticides like hexachlorocyclohexanes (HCHs) and DDX compounds (p,p'-DDE, p,p'-DDD, and p,p'-DDT) as well as chlorobenzenes in strawberries has been developed. The procedure is based on aqueous accelerated solvent extraction (ASE) followed by solid-phase microextraction (SPME) or stir bar sorptive extraction (SBSE) and subsequent thermodesorption-gas chromatography/mass spectrometry analysis. A 65 microm polydimethylsiloxane/ divinylbenzene fiber was chosen for the SPME experiments. Significant SPME and ASE parameters were optimized using spiked water and strawberry samples. For the ASE of the organochlorine compounds, a water-acetone mixture (90 + 10, v/v) as the extraction solvent, an extraction temperature of 120 degrees C, and 2 cycles of 10 min extraction proved optimal. The developed method was evaluated with respect to precision and limits of detection (LOD). The relative standard deviations of replicate ASE-SPME determinations (n = 5) were in the range of 4-24%. LOD values between 1 and 10 microg/kg were achieved with the exception of DDT and DDE (40 microg/kg). Using SBSE, the LOD of these compounds could be improved (2 and 5 microg/kg). The main advantages of this method are the avoidance of cleanup and concentration procedures as well as the significant reduction of the required volume of organic solvents. The described method was applied to the determination of the pollutants in strawberry samples collected from different allotment gardens in a potentially polluted area, the Bitterfeld-Wolfen region (Germany).  相似文献   

19.
A solid-phase microextraction (SPME)-GC procedure has been developed for the analysis of four selected pesticides (propanil, acetochlor, myclobutanil and fenoxycarb) in water samples. Mass spectrometry (MS) was used and two different instruments, a quadrupole MS system and an ion trap operating in the MS-MS mode, were compared. A Carbowax-divinylbenzene SPME fiber was used. The performances of the two GC-MS instruments were comparable in terms of linearity (in the range of 0.1-10 microg/l in water samples) and sensitivity (limits of detection were in the low ng/l range); the quadrupole MS instrument gave better precision than the ion trap MS-MS system, but generally the relative standard deviations for replicates were acceptable for both instruments (<15%). Specificity with these two instruments was comparable in the analysis of ground water samples. Recovery tests were made to assess the applicability of the SPME procedure in the quantitative analysis of contaminated groundwaters.  相似文献   

20.
A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL−1 (LLOQ) to 400 ng mL−1 with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from −1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号