首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents experimental counter-current air–water flow data on the onset of flooding and slugging, the slug propagation velocity, the predominant slug frequency and the average void fraction collected by using different size orifices installed at two locations in a horizontal pipe. For the flow conditions covered during these experiments, it was observed that there is no significant difference between the onset of flooding and the onset of slugging when an orifice is installed in the horizontal run. However, a difference was observed for the experiments carried out without orifices. Furthermore, the position of the orifice with respect to the elbow does not affect the onset of flooding and slugging. When an orifice is installed in the horizontal run, it was observed that slugs occur due to the mutual interaction (constructive interference) of two waves traveling in opposite directions. This means that a completely different mechanism seems to govern the formation of slugs in counter-current two-phase flows in horizontal partially blocked pipes. This is in contrast to that described for the slugging phenomena in co-current flow, where wave instability seems to be the principal mechanisms responsible of bridging the pipe. The mutual interaction of waves traveling in opposite directions seems to control the behaviour of the slug propagation velocity, the slug frequency and average void fraction with increasing the gas superficial velocity.  相似文献   

2.
严重段塞流是海洋工程气液混输管线--立管系统中常见的一种特殊有害流动现象, 采用水平--下倾--悬链线立管气液混输组合管道系统, 通过系列实验在悬链线立管中获得了严重段塞流、间歇流和震荡流等流型, 阐述了这些流动现象的形成机理, 提出了能够产生严重段塞流的判定准则. 结果表明, 悬链线立管严重段塞流具有明显周期性, 在一个周期内的流动特征可分为液塞形成、液体出流、液气喷发及液体回流等4个阶段, 进而给出了各阶段中相关流动参数的变化规律. 在实验中同时还对悬链线与垂直立管中严重段塞流形成机理进行了比较分析, 发现两者在液塞形成阶段有显著差别. 其中, 在悬链线立管中液塞形成之前首先需要经历一个气液混合液塞形成过程, 而垂直立管则没有这个过程.   相似文献   

3.
Gas–liquid slug flow occurs over a wide range of phase flow rates and in a variety of practical applications during gas–liquid two-phase flows. The range of slug flow increases further in narrow pipes (<0.0254 m), undulated pipelines, riser tube, etc. On the other hand, the past literature shows that slug flow is rarely observed for liquid–liquid cases. In the present study, an interest was felt to investigate whether liquid–liquid slug flow occurs in situations known for excessive slugging in gas–liquid cases. For this, experiments have been performed in narrow (0.012 m ID) vertical and horizontal pipes and an undulated pipeline of 0.0254 m internal diameter where the V-shaped undulation comprises of an uphill and a downhill section between two horizontal pipes. The studies have been performed for both peak and valley orientation of the undulation. Kerosene and water have been selected as the test fluids and the optical probe technique has been used to supplement visual observations especially at higher flow rates. The studies have revealed the existence of the slug flow pattern over a wide range of phase flow rates in all the three geometries. Interestingly, it has been noted that the introduction of an undulation induces flow patterns which bear a closer resemblance to gas–liquid flows as compared to liquid–liquid flows through a horizontal pipe of 0.0254 m diameter.  相似文献   

4.
Severe slugging is a dynamic two-phase flow phenomenon with regular liquid accumulation and blow-out in flow-line riser geometries. This paper discusses the applicability of a slug tracking model on a case where hydrodynamic slug initiation in a horizontal part of the pipeline upstream the riser base affects the severe slugging cycle period. The given experimental case is from the Shell laboratories in Amsterdam: air–water flow in a 100 m long pipe (65 m horizontal and 35 m −2.54° downwards) followed by a 15 m long vertical riser.A Lagrangian slug and bubble tracking model is described. A two-fluid model is applied in the bubble region and the slug region is treated as incompressible flow, with an integral momentum equation. Slug initiation from unstable stratified flow can be captured directly by solving the two-fluid model on a fine grid (a hybrid capturing and tracking scheme). Alternatively, slug initiation can be made from sub grid models, allowing for larger grid sizes. The sub grid models are based on the two established flow regime transition criteria derived from the stability of stratified flow and from the limiting solution of the unit cell slug flow model.Sensitivity studies on hydrodynamic slug initiation models on the severe slugging characteristics are presented. No hydrodynamic slug initiation (e.g. large grid size in the capturing scheme) overestimates the severe slug period compared with the experiments. Slug capturing and sub grid initiation models both give good predictions for small grid sizes (provided the detailed inlet configuration is included in the capturing case). Good predictions are also shown for larger grid sizes (factor of 50) and sub grid initiation models.The numerical tests show that correct prediction of the severe slugging cycle is sensitive to the initiation of upstream hydrodynamic slugs, but less sensitive to the local structure of the slug flow (frequencies and lengths) in the upstream region.  相似文献   

5.
An experimental investigation has been undertaken to understand the phase split of nitrogen gas/non-Newtonian liquid two-phase flow passing through a 0.5 mm T-junction that oriented horizontally. Four different liquids, including water and aqueous solutions of carboxymethyl cellulose (CMC) with different mass concentrations of 0.1, 0.2 and 0.3 wt%, were employed. Rheology experiments showed that different from water, CMC solutions in this study are pseudoplastic non-Newtonian fluid whose viscosity decreases with increasing the shear rate. The inlet flow patterns were observed to be slug flow, slug–annular flow and annular flow. The fraction of liquid taken off at the side arm for nitrogen gas/non-Newtonian liquid systems is found to be higher than that for nitrogen gas/Newtonian liquid systems in all inlet flow patterns. In addition, with increasing the pseudoplasticity of the liquid phase, the side arm liquid taken off increases, but the increasing degree varies with each flow pattern. For annular flow, the increasing degree is much greater than those for slug and slug–annular flows.  相似文献   

6.
This paper provides a qualitative visual observation of the two-phase flow patterns for HFO-1234yf and R-134a during downward flow in a vertical 6.7 mm inner diameter glass return bend. The different flow regimes observed are: slug, intermittent and annular flows. Bubble and vapor slug dynamical behaviors in downward slug flow are reported for HFO-1234yf. In addition, to determine the perturbation lengths up- and downstream of the return bend, the total pressure drop has been measured at different pressure tap location up- and downstream of the singularity. Furthermore, 285 pressure drop data points measured for two-phase flow of HFO-1234yf, R-134a and R-410A in vertical downward flow return bends are presented. The flow behavior in the return bend, which is subjected to the complex combined actions of gravity and centrifugal force was expressed in terms of the vapor Froude number. This experimental pressure drop database, which is included in the appendix, is compared to four well-known prediction methods available in the literature.  相似文献   

7.
A fast response, linearized X-ray void measurement system has been used to obtain statistical measurements in normally fluctuating air-water flow in a rectangular channel. It is demonstrated that the probability density function (PDF) of the fluctuations in void fraction may be used as an objective and quantitative flow pattern discriminator for the three dominant patterns of bubbly, slug, and annular flow. This concept is applied to data over the range of 0.0 to 37 m/sec mixture velocities to show that slug flow is simply a transitional, periodic time combination of bubbly and annular flows. Film thicknesses calculated from the PDF data are similar in magnitude in both slug and annular flows. Calculation of slug length and residence time ratios along with bubble lengths in slug flow are also readily obtainable from the statistical measurements. Spectral density measurements showed bubbly flow to be stochastic while slug and annular flows showed periodicities correlatable in terms of the liquid volume flux.  相似文献   

8.
A numerical study based on a one-dimensional two-fluid model is carried out to describe the transient hydrodynamic slugging and terrain-induced severe slugging in a pipeline–riser system. The system of equations is rendered well-posed by interfacial pressure model for the riser. The selected flow conditions are restricted in the well-posed region for the horizontal and the downward inclined pipes to ensure the hydrodynamic slug characteristics are predicted correctly. The validity of the model is examined by water faucet problem and horizontal slug flow experiments. Simulations with and without slug capturing are conducted to address the effect of hydrodynamic slugs on severe slugging. It has been found that more accurate predictions are obtained by taking hydrodynamic slugs into account. At low superficial gas velocity, the simulation without slug capturing tends to overestimate the severe slugging period. When hydrodynamic slugs are captured, the upstream gas expansion is suppressed by the hydrodynamic slugs. At relatively high superficial gas velocity, the simulation without slug capturing tends to underestimate the severe slugging period. When hydrodynamic slugs are captured, the upstream compressible volume is greatly enlarged by the blowout of the hydrodynamic slugs. In both situations, the influences of the hydrodynamic slugs can reduce the errors of the predicted severe slugging characteristics.  相似文献   

9.
The upstream offshore multi-phase well-pipeline-riser installations are facing huge challenges related to slugging flow: An unstable flow regime where the flow rates, pressures and temperatures oscillate in the multi-phase pipelines. One typical severe slug is induced by vertical wells or risers causing the pressure to build up and hence originates the oscillating pressure and flow. There exist many negative consequences related to the severe slugging flow and thus lots of investments and effort have been put into reducing or completely eliminating the severe slug. This paper reviews in details the state-of-the-art related to analysis, detection, dynamical modeling and elimination of the slug within the offshore oil & gas Exploration and Production (E&P) processes. Modeling of slugging flow has been used to investigate the slug characteristics and for design of anti-slug control as well, however most models require specific facility and operating data which, unfortunately, often is not available from most offshore installations. Anti-slug control have been investigated for several decades in oil & gas industry, but many of these existing methods suffer the consequent risk of simultaneously reducing the oil & gas production. This paper concludes that slug is a well defined phenomenon, but even though it has been investigated for several decades the current anti-slug control methods still have problems related to robustness. It is predicted that slug-induced challenges will be even more severe as a consequence of the longer vertical risers caused by deep-water E&P in the future.  相似文献   

10.
Two-phase flow is common in the nuclear industry. It is a potential source of vibration in piping systems. In this paper, two-phase damping in the bubbly flow regime is related to the interface surface area and, therefore, to flow configuration. Experiments were performed with a vertical tube clamped at both ends. First, gas bubbles of controlled geometry were simulated with glass spheres let to settle in stagnant water. Second, air was injected in stagnant alcohol to generate a uniform and measurable bubble flow. In both cases, the two-phase damping ratio is correlated to the number of bubbles (or spheres). Two-phase damping is directly related to the interface surface area, based on a spherical bubble model. Further experiments were carried out on tubes with internal two-phase air–water flows. A strong dependence of two-phase damping on flow parameters in the bubbly flow regime is observed. A series of photographs attests to the fact that two-phase damping in bubbly flow increases for a larger number of bubbles, and for smaller bubbles. It is highest immediately prior to the transition from bubbly flow to slug or churn flow regimes. Beyond the transition, damping decreases. It is also shown that two-phase damping increases with the tube diameter.  相似文献   

11.
This paper presents a methodology for modeling slug initiation and growth in horizontal ducts. Transient two-fluid equations are solved numerically using a class of high-resolution shock capturing methods. The advantage of this method is that slug formation and growth in a stratified regime can be calculated directly from the solutions to the flow field differential equations. In addition, by using high-resolution shock capturing methods that do not contain numerical diffusion, the discontinuity generated by slugging in the flow field can be modeled with good accuracy. The two-fluid model is shown to be well-posed mathematically only under certain conditions. Under these circumstances, the two-fluid model is capable of correctly predicting and modeling the flow physics. When ill-posed, an unbounded instability occurs in the flow field solution, and the instability amplitude increases exponentially with decreasing mesh sizes. This work shows that there are three zones associated with slug formation. In addition, long wavelength slugs are shown to initiate from short wavelength waves. These short waves are generated at the interface of the two phases by the Kelvin-Helmholtz hydrodynamic instability. The results obtained through numerical modeling show good agreement with experimental results.  相似文献   

12.
Thermalhydraulic transient phenomena of a steam-water two-phase flow was calculated numerically in order to investigate the onset of slugging from a stratified flow in a horizontal duct. Conservation equations were solved by the finite difference method using a two-phase flow analyzer ‘MINCS’. The analysis was performed to investigate the initiation of slugging with and without phase change, or condensation. The present instability criteria for the onset of slugging with no condensation agreed well with that of the Mishima–Ishii relation while it was much lower than that defined by the Kelvin–Helmholtz instability criteria. However, as the temperature difference between phases increased, steam velocity became higher for the onset of slugging condition. The characteristics of flow reversal and water hammering which were the consequences of slugging with condensation, were investigated and described. It is expected that this modeling could be well applied to complicated thermalhydraulic phenomena accompanied by flow reversal and water hammering in power plants.  相似文献   

13.
Flow pattern, void fraction and slug rise velocity on counter-current two-phase flow in a vertical round tube with wire-coil inserts are experimentally studied. Flow pattern and slug rise velocity are measured visually with a video camera. The void fraction is measured by the quick-closing valve method. Four kinds of coils with different coil pitches and coil diameters are used as inserts. The presence of wire-coil inserts induces disturbance into gas and liquid flows so that the shape and motion of gas slug or bubbles in a wire-coil inserted tube are quite different from those observed in a smooth tube without insert. The bubbly flow occurs in the low gas superficial velocity region in the wire-coil inserted tube, while the slug or churn/annular flow only appears in the smooth tube without insert over the all test range. The measured slug rise velocity in the wire-coil inserted tube is higher than that in the smooth tube. With modified mean flow velocity calculated with core area, the slug rise velocity in wire-coil tube inserted is in good agreement with Nicklin's correlation. The void fraction in a wire-coil inserted tube is lower than that in a smooth tube in the range of high gas superficial velocities. By introducing a simple assumption on considering the effective flowing area, the measured void fractions in a wire-coil inserted tube are in relatively good agreement with the predicted result based on the drift flux model proposed by others with the correlation for slug rise velocity given by others when the coil pitch is dense.  相似文献   

14.
A first experimental study on two-phase flow patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station “MIR” in August 1999. Carbogal and air are used as the liquid and the gas phase, respectively. Bubble, slug, slug-annular transitional, and annular flows are observed. A new region of annular flow with lower liquid superficial velocity is discovered, and the region of the slug-annular transitional flow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug-annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase flow patterns in the present experiments are discussed. The project supported by the National Natural Science Foundation of China (19789201), the Ministry of Science and Technology of China (95-Yu-34), and the Post-doctoral Science Foundation of China  相似文献   

15.
The gas/liquid two-phase flow in pipeline/wavy-pipe/riser systems was investigated numerically with CFD. A CFD model of the pipeline/wavy-pipe/riser system was obtained by adding a wavy pipe to the model of the pipeline/riser system verified by the experimental data previously. The effects of the geometrical parameters and location of the wavy pipe on its performance of slug mitigation and flow characteristics in pipeline/wavy-pipe/riser systems were examined through the CFD models. With the increase of the amplitude or length of the wavy pipe, the slug in the pipeline/riser system becomes shorter. The optimum location of the wavy pipe in the pipeline exists for a pipeline/riser system and a wavy pipe at given operating conditions. The CFD modelling provides a feasible and flexible way to investigate the effectiveness of the wavy pipes on mitigating severe slugging in pipeline/riser systems.  相似文献   

16.
The interfacial area concentration is one of the most important parameters in analyzing two-phase flow based on the two-fluid model. The local instantaneous formulation of the interfacial area concentration is introduced here. Based on this formulation, time and spatial averaged interfacial area concentrations are derived, and the local ergodic theorem (the equivalency of the time and spatial averaged values) is obtained for stationary developed two-phase flow. On the other hand, the global ergodic theorem is derived for general two-phase flow. Measurement methods are discussed in detail in relation to the present analysis. The three-probe method, with which local interfacial area concentration can be measured accurately, has been proposed. The one-probe method under some statistical assumptions has also been proposed. In collaboration with the experimental data for the interfacial velocity, radial profiles of the local interfacial area concentration are obtained based on the one-probe method. The result indicates that the local interfacial area concentration has a peak value near the tube wall in bubbly flow. This is consistent with the near wall peak of local void fraction separately observed. In slug flow it shows a higher value in the central region of the tube for that particular set of data.  相似文献   

17.
The motion of a vortex ring generated by gradually varied flows through a thin-edged orifice has been investigated experimentally using particle image velocimetry. This flow reproduces the primary characteristics of many biological flows, such as cardiac flows through valves or jellyfish and squid propulsion. Even though vortex ring formation has been extensively studied, there is still interest in gradually varying inflows, i.e. the ones that are mostly found in previous conditions. The main purpose of this paper is to extend the time scaling already proposed in the literature to the entire cycle of vortex ring formation, pinch-off and free motion. To this end, eight inflow time laws have been tested, with different acceleration and deceleration phases. They have been selected in relation to practical applications by their resemblance to the main characteristics of cardiovascular and pulsed locomotion flows. Analysis of measured velocity and vorticity fields suggested a general criterion to establish the instant of vortex pinch-off directly from the imposed velocity program. This allows the proper scaling of the entire time evolution of the vortex ring for all tested inflows. Since it is quite easy to identify this instant experimentally, these results give a simple, practical rule for the computation of scales in vortex ring formation and development in the case of gradual inflows. The “slug model” has been used to test the proposed scaling and to obtain predictions for the vortex position, circulation and vorticity which are in agreement with experimental data.  相似文献   

18.
To improve the understanding of two-phase critical flow phenomena, both single- and two-phase flows are studied in parallel. This can be done only if compatible mathematical models are used for both flows. In particular, since the evolution of the fluid or of the mixture is, in fact, a consequence of the transfers at the wall and at the interface, it is more rational to postulate transfer laws than to assume fluid, or mixture, evolutions.It is shown that the mathematical form of the above transfer laws is of primary importance, and it is proposed to allow for the presence, in the transfer terms, of partial derivatives of dependent variables.The critical flow condition is discussed within the above framework. A necessary critical flow criterion is obtained by equating to zero the determinant of the set of equations describing the steady-state flow. This criterion must be complemented by the study of the compatibility conditions of the set.It is verified that a flow is critical when disturbances, initiated downstream of some “critical” section, cannot propagate upstream of this section. A decrease of the outlet pressure has therefore no effect on the flow parameters upstream of the critical section, and the flow rate is maximum.Examples are given to demonstrate the potentialities of the method. It is shown that appropriate assumptions on the transfer laws enable existing models to be discussed.  相似文献   

19.
The results from an experimental study of reduced-gravity two-phase flows are reported in this paper. The experiments were conducted in simulated reduced-gravity conditions in a ground-based test facility with a circular test section of 25 mm inner diameter. The flow conditions for which data were acquired lie in the dispersed droplet to slug flow transition and slug flow regime. Local data were acquired for 17 different flow conditions at three axial locations. The acquired data complement and extend those discussed in an earlier paper by the authors (Vasavada et al. in, Exp Fluids 43: 53–75, 2007). The radial profiles and axial changes in the local data are analyzed and discussed in this paper. The area-averaged data, in conjunction with the local data, are discussed to highlight important interaction mechanisms occurring between fluid particles, i.e., drops. The data clearly show the effect of progressive coalescence leading to formation of slug drops. Furthermore, the shape of slug drops in reduced-gravity conditions was observed to be different from that in normal-gravity case. The analyses presented here show the presence of drop coalescence mechanisms that lead to the formation of slug drops and transition from dispersed droplet flow to the slug flow regime. The most likely causes of the coalescence mechanism are random collision of drops driven by turbulence eddies in the continuous phase and wake entrainment of smaller drops that follow preceding larger drops in the wake region. Data from flow conditions in which the breakup mechanism due to impact of turbulent eddies on drops illustrate the disintegration mechanism.  相似文献   

20.
At present there is significant interest in the development of small scale medical diagnostic equipment. These devices offer faster processing times and require smaller sample volumes than equivalent macro scale systems. Although significant attention has been focused upon their outputs, little attention has been devoted to the detailed fluid mechanics that govern the flow mechanisms within these devices. Conventionally, the samples in these small scale devices are segmented into distinct discrete droplets or slugs which are suspended in an organic carrier phase. Separating these slugs from the channel wall is a very thin film of the organic carrier phase.The magnitude of this film is the focus of the present study and the effects of sample slug length and carrier phase fluidic properties on the film are examined over a range of Capillary numbers. A non-intrusive optical technique was used to capture images of the flow from which the magnitude of the film was determined.The experimental results show that the film is not constant along the length of the slug; however above a threshold value for slug length, a region of constant film thickness exists. When compared with existing correlations in the literature, the experimental data showed reasonable agreement with the Bretherton model when the Capillary number was calculated based on the mean two phase flow velocity. However, significant differences were observed when the Capillary number was redefined to account for the mean velocity at the liquid interface, i.e., the mean slug velocity.Analysis of the experimental data revealed that it fell into two distinct flow regimes; a visco-capillary regime and a visco-inertial regime. A modified Taylor expression is presented to estimate the magnitude of the film for flows in the visco-capillary regime while a new model is put forward, based on Capillary and Weber numbers, for flows in the visco-inertial regime. Overall, this study provides some novel insights into parameters, such as aqueous slug length and carrier phase fluidic properties, that affect the thickness of the film in liquid–liquid slug flow regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号