首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allyl cation geometries optimized using an extended version of MMP2, newly parameterized for localized and delocalized classical cations, compare favorably with those obtained at the MP2(full) /6–31G* level. Hence, the force field should provide good starting structures for ab initio calculations. The π-electron densities obtained by these two very different methods are quite similar. The relative energies of various isomers at MP4/6–31G*//MP2(full)/6–31G* are reproduced well by the force-field calculations. The heats of formation calculated by MMP2, as well as those predicted from the ab initio data, agree with experimentally determined values. The force-field method provides interpretive capabilities. Energy differences between isomers can be separated into electronic and steric contributions, reasonable estimates of resonance energies are given, and nonbonded resonance energies in delocalized cations can be evaluated. The stabilizing 1–3 π-interactions in allyl cations are quite significant, but are reduced by alkyl groups hyperconjugatively and sterically. © 1997 by John Wiley & Sons, Inc.  相似文献   

2.
The vibrational spectra and the harmonic force field for the stannane molecule has been calculated from ab initio SCF calculations using an effective core potential and two double-zeta basis sets for the valence electrons. Polarized functions and electron correlation effects on the calculated force constants and frequencies are analyzed carefully. At HF SCF level the calculated frequencies are higher than the experimental ones by about 8.15% while at second-order Møller-Plesset perturbation level, the mean absolute percentage deviation of the frequencies is found to be 3.75%. This mean absolute percentage deviation is notably improved at SDCI (3.2%) and SDQCI (2.2%) levels of theory. The integrated molar absorption coefficients and the scattering activities are calculated and their values agree reasonably with experiment.  相似文献   

3.
Infrared spectra simulations require ab initio techniques to get reliable intensities. On the other hand, recent force fields can provide accurate molecular geometries and frequencies. Therefore, it is suggested that these new force fields could be used to simulate infrared spectra, dipole-moment surfaces being described at high levels of theory in order to get satisfactory intensities. As pointed out, for a system with N atoms, the cost of such a simulation would be reduced N-fold with respect to standard quantum approaches. Preliminary calculations based on this scheme are reported here. Encouraging results are obtained since no significant lost of accuracy is noted on going from the ab initio to the molecular mechanics potential energy surface. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 705–711, 1998  相似文献   

4.
In this work, experimental and theoretical study on the molecular structure and the vibrational spectra of o-chlorotoluene (OCT), m-chlorotoluene (MCT) and p-chlorotoluene (PCT) are presented. The vibrational frequencies of these compounds were obtained theoretically by ab initio HF and DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set for optimized geometries and were compared with Fourier transform infrared (FTIR) in the region of 400-4000 cm(-1) and with Raman spectra in the region of 100-4000 cm(-1). Complete vibrational assignment, analysis and correlation of the fundamental modes for these compounds have been carried out. The vibrational harmonic frequencies were scaled using scale factors, yielding a good agreement between the experimentally recorded and the theoretically calculated values.  相似文献   

5.
Density functional theory (DFT), HF and MP2 calculations have been carried out to investigate thioxanthone molecule using the standard 6-31+G(d,p) basis set. The results of MP2 calculations show a butterfly structure for thioxanthone. The calculated results show that the predicted geometry can well reproduce the structural parameters. The predicted vibrational frequencies were assigned and compared with experimental IR spectra. A good harmony between theory and experiment is found. The theoretical electronic absorption spectra have been calculated using CIS method. 13C and 1H NMR of the title compound have been calculated by means of B3LYP density functional method with 6-31+G(d,p) basis set. The comparison of the experimental and the theoretical results indicate that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties.  相似文献   

6.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-N,N'-dimethylamino pyridine (4NN'DMAP). The Fourier transform infrared and Fourier transform Raman spectra of 4NN'DMAP was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-31G(d,p) and 6-311++G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the title compound were performed at same level of theories. The scaled theoretical wavenumber showed very good agreement with the experimental values. The thermodynamic functions of the title compound was also performed at HF/6-31G(d,p) and B3LYP/6-311++G(d,p) level of theories. A detailed interpretation of the infrared and Raman spectra of 4NN'DMAP was reported. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed.  相似文献   

7.
The structural properties of 2,3-cyclopentenopyridine (pyrindan) have been investigated using several spectroscopic and computational techniques. The Raman and infrared spectra of the molecule have been recorded and a full vibrational assignment was proposed on the basis of experimental and theoretical results. The vapor-phase Raman spectrum was successfully obtained at 260 degrees C without sample decomposition. Density functional theory (DFT) and M?ller-Plesset (MP2) calculations predict that the presence of the nitrogen atom in the six-membered ring has almost no effect on the barrier to inversion (587 cm(-1)) and puckering frequency (139 cm(-1)) as compared to the values previously determined (488 cm(-1) and 143 cm(-1)) for the indan molecule.  相似文献   

8.
Vibrational frequencies and gauge including atomic orbital (GIAO) 13C NMR and 1H NMR chemical shift values of 2,6 distyrylpyridine (C21H17N) in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. These methods are proposed as a tool to be applied in the structural characterization of 2,6 distyrylpyridine (C21H17N). The title compound has C2v point group, thus providing useful support in the interpretation of experimental IR data. In addition, obtained results were related to the linear correlation plot of experimental 13C NMR, 1H NMR chemical shifts values and IR data.  相似文献   

9.
FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole   总被引:1,自引:0,他引:1  
FTIR and Raman spectra of a rubber vulcanization accelerator, 2-mercaptobenzothiazole (MBT), were recorded in the solid phase. The harmonic vibrational wavenumbers, for both the toutomeric forms of MBT, as well as for its dimeric complex, have been calculated, using ab initio RHF and density functional B3LYP methods invoking different basis sets upto RHF/6-31G** and B3LYP/6-31G** and the results were compared with the experimental values. Conformational studies have been also carried out regarding its toutomeric monomer forms and its dimer form. With all the basis sets the thione form of MBT (II) is predicted to be more stable than thiol form (I) and dimeric conformation (III) is predicted to be more stable with monomeric conformations (I) and (II). Vibrational assignments have been made, and it has been found that the calculated normal mode frequencies of dimeric conformation (III) are required for the analysis of IR and Raman bands of the MBT. The predicted shift in NH- stretching vibration towards the lower wave number side with the B3LYP/6-31G** calculations for the most stable dimer form (III), is in better agreement with experimental results. The intermolecular sulfur-nitrogen distance in N-H...S hydrogen bond was found to be 3.35 angstroms from these calculations, is also in agreement to the experimental value.  相似文献   

10.
Ab initio SCF calculations using the 4-31G basis set have been carried out to determine the equilibrium geometry, force constants and dipole moment derivatives of the linear (Cs and cylic (C2h) ammonia dimers. The results are compared with monomer calculations and experimental data.  相似文献   

11.
Geometry, vibrational wavenumbers and several thermodynamic parameters were calculated using ab initio quantum chemical methods for the 3,5-difluorobenzonitrile molecule. The results were compared with the experimental values. With the help of three specific scaling procedures, the observed vibrational wavenumbers in FTIR and Raman spectra were analysed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range and the error obtained was in general very low. Using PEDs the contributions were determined for the different modes to each wavenumber. From the PED, it is apparent that the frequency corresponding to C[triple bond]N stretching contains 87% contribution from the C[triple bond]N stretching force constant and it mixes with the C-CN stretching mode 13 to the extent of 12%. Other general conclusions were also deduced.  相似文献   

12.
We present a detailed analysis of the structural, infrared spectra and visible spectra of the 4-substituted aminoazo-benzenesulfonyl azides. The preparation of 4-sulfonyl azide benzenediazonium chloride with cyclic amines of various ring sizes (pyrrolidine, piperidine, 4-methylpiperidine, N-methylpiperazine, morpholine and hexamethyleneimine) have been investigated theoretically by performing HF and DFT levels of theory using the standard 6-31G* basis set. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FT-IR spectra are assigned modes based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with the calculations.  相似文献   

13.
Cadmium-n-di-isopropylphosphorylguanidine-di-chloride (CdDPGCl2) was synthesized in the solid phase and characterized previously. The Fourier transform infrared and Raman spectra of (CdDPGCl2) in the solid state were recorded and analyzed. Emphasis was placed on the vibrational assignment of the [(O2P=O-[CdCl2]-HN=C) fragment of the complete molecular structure. With the aim of assisting the vibrational assignment of the experimental spectra, a comparison with the spectra of N-di-isopropylphosphorylguanidine ligand was carried out and ab initio calculations have been performed with several effective core potentials and valence basis sets (Hay-Wadt (HW) and Stevens-Basch-Krauss (SBK)). Due to our limited computational resources, hydrogen atoms replaced the isopropyl groups. The calculated geometrical parameters showed excellent agreement with the experimental, as well as the RHF/MP2 calculated infrared wave numbers, when compared to the IR/Raman experimental wave numbers.  相似文献   

14.
Glycolic acid isolated in Ar has been found to undergo conformer isomerization by broad band IR irradiation. Analysis of the spectra of CH2OHCOOH, CH128OHCOOH CH2OHC18OOH, CH2OHCO18OH, CH2OHC18O18OH and 13C isotopic modifications based on a two-conformer model allows the determination of the structure of a new conformer produced by photoconversion as
For this result, observation of 18O isotope shifts is essential. Ab initio calculations on the 6–31G* level are reported for eight conformers with a planar skeleton and for some non-planar conformations possibly involved in the reaction path. Furthermore a constrained valence force field for trans glycolic acid based on certain transferability rules is reported.  相似文献   

15.
The microwave spectra of (methylamino)thiophosphoryl difluoride, CH(3)NHP(=S)F(2), and two deuterated species, CH(3)NDP(=S)F(2) and CD(3)NHP(=S)F(2), have been investigated in the region from 26.5 to 39.0 GHz. The rotational constants of the ground vibrational state have been determined and have been shown to be only consistent with the trans conformer (CH(3) group antiperiplanar to the P=S bond) with C(s) symmetry. The a-type R branch transitions have been assigned for the trans conformer for the three isotopomers on the basis of the rigid rotor model. Near-trans and near-cis forms without molecular planes of symmetry are predicted by all ab initio calculations with the near-trans form being more stable. However, the double-well potentials governing the interchange between the two enantiomeric near-trans as well as the two near-cis forms are too shallow to accommodate the zero-point energies of the nu(24) asymmetric torsion. Thus, the trans conformation with C(s) symmetry may be more accurate in explaining the microwave experimental data. The "adjusted" r(0) structural parameters have been obtained by systematically adjusting the ab initio MP2(full)/6-311+G(d,p) structure of the trans conformer with C(s) symmetry to fit the microwave rotational constants. The determined heavy atom distances are r(C-N) = 1.459(5), r(P-N) = 1.621(5), r(P=S) = 1.879(5), and r(P-F) = 1.550(5) A, and the heavy atom angles are angleCNP = 124.7(5) degrees , angleNPS = 118.3(5) degrees , angleNPF = 103.2(5) degrees , angleFPS = 117.0(5) degrees , and angleFPF = 94.6(5) degrees . The adjusted r(0) parameters have also been obtained for aminodifluorophosphine, H(2)NPF(2), with a slightly pyramidal -PNH(2) moiety. The results indicate that the previously reported short distance of 0.981(5) A for the N-H(o)(outer) bond from the microwave study is too short, and the adjusted r(0) value of 1.007(3) A is obtained from the combined data. Adjusted r(0) parameters are also reported for (dimethylamino)difluorophosphine, (CH(3))(2)NPF(2), with C(s) symmetry with the PNC(2) portion of the molecule being planar. The previously reported C-H distances from the electron diffraction study are too long, and the anglePNC(i) and angleC(o)NC(i) angles are also found to be in error. These results provide a reasonable explanation why the microwave and electron diffraction results differ for the structures of these latter two molecules.  相似文献   

16.
The Fourier transform Raman and Fourier transform infrared spectra of p-bromophenoxyacetic acid were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by HF and DFT (B3LYP) method with the 6-31G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental ones. A detailed interpretation of the infrared and Raman spectra of p-bromophenoxyacetic acid is reported on the basis of the calculated potential energy distribution. The theoretical spectrograms for the IR spectrum of the title molecule have been constructed.  相似文献   

17.
The infrared spectra of gaseous and solid 2,2,2-trifluoroethanimidamide, CF3(NH2)C=NH, have been recorded from 4000 to 80 cm–1. A vibrational assignment for the normal modes is proposed based on group frequencies and normal coordinate calculations utilizing C1 symmetry. The structures for both the cis [hydrogen atom of the =NH group is cis to the NH2 group] and trans geometric isomers have been determined from ab initio Hartree-Fock gradient calculations employing the GAUSSIAN-82 program with the 3–21G basis set. The most stable conformer at this level of calculation is found to be a C1, structure with a partially rotated CF3 group and the hydrogen atom of the imine group trans to the NH2 group. The calculated structural parameters have only very small differences between the conformers. Barriers to internal rotation for the NH2 and CF3 groups and vibrational frequencies have been calculated for the C1 form. The results of this investigation are compared with similar data on some corresponding molecules.Taken in part from the thesis of T. G. Sheehan which was submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree, May 1990.  相似文献   

18.
The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

19.
Combined gas electron diffraction/mass spectrometry (GED/MS) was used to determine the molecular structure of tris(dipivaloylmethanato)lutetium(III), Lu(dpm)(3)(dpm = 2,2,6,6-tetramethyl-heptane-3,5-dionato). Up to about 520-570 K the vapour consisted only of molecules Lu(dpm)(3). The experimental data recorded at 408(5) K indicate that the molecules have D(3) symmetry. The bond distances (r(h1)) in the chelate ring are Lu-O 2.197(6) Angstrom, C-O 1.270(4) Angstrom and C-C 1.390(6) Angstrom . Theoretical computations at the HF and DFT levels with basis sets up to 6-311G* afford structures similar to those found experimentally, with a distorted LuO(6) antiprism.  相似文献   

20.
Quantum chemical calculations of energies, geometrical structure and vibrational wave numbers of 3,4-dimethoxybenzonitrile (DMBN) were carried out by the ab initio Hartree-Fock (HF) and density functional theory (DFT) with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. Making use of the recorded data, the complete vibrational assignments are made and analysis of the observed fundamental bands of molecule is carried out. The geometries and normal modes of vibrations obtained from ab initio HF and B3LYP calculations are in good agreement with the experimentally observed data. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. The theoretical FTIR and FT-Raman spectra for the title molecule have been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号