首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The double-diffusive convection in a horizontal fluid-saturated porous layer, which is heated and salted from below in the presence of Soret and Dufour effects, is studied analytically using both linear and nonlinear stability analyses. The linear analysis is based on the usual normal mode technique, while the nonlinear analysis is based on truncated representation of Fourier series. The generalized Darcy model that includes the time derivative is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effects of solute Rayleigh number, Lewis number, normalized porosity parameter, Vadasz number, Soret and Dufour parameters on the stationary, oscillatory convection, and heat and mass transfers are shown graphically. The Vadasz number has dual effect on the threshold of the oscillatory convection. Some known results are recovered as special cases of the present problem.  相似文献   

2.
The double diffusive convection in a horizontal couple stress fluid saturated anisotropic porous layer, which is heated and salted from below, is studied analytically. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameter, solute Rayleigh number, Lewis number, couple stress parameter, and Vadasz number on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that the thermal anisotropy parameter, couple stress parameter, and solute Rayleigh number have stabilizing effect on the stationary, oscillatory, and finite amplitude convection. The mechanical anisotropy parameter has destabilizing effect on stationary, oscillatory, and finite amplitude convection. The Lewis number has stabilizing effect in the case of stationary and finite amplitude modes, with dual effect in the case of oscillatory convection. Vadasz number advances the onset of oscillatory convection. The heat and mass transfer decrease with an increase in the values of couple stress parameter, while both increase with an increase in the value of solute Rayleigh number and mechanical anisotropy parameter. The thermal anisotropy parameter and Lewis number have contrasting effect on the heat mass transfer.  相似文献   

3.
The effect of rotation and anisotropy on the onset of double diffusive convection in a horizontal porous layer is investigated using a linear theory and a weak nonlinear theory. The linear theory is based on the usual normal mode technique and the nonlinear theory on the truncated Fourier series analysis. Darcy model extended to include time derivative and Coriolis terms with anisotropic permeability is used to describe the flow through porous media. The effect of rotation, mechanical and thermal anisotropy parameters, and the Prandtl number on the stationary and overstable convection is discussed. It is found that the effect of mechanical anisotropy is to allow the onset of oscillatory convection instead of stationary. It is also found that the existence of overstable motions in case of rotating porous medium is not restricted to a particular range of Prandtl number as compared to the pure viscous fluid case. The finite amplitude analysis is performed to find the thermal and solute Nusselt numbers. The effect of various parameters on heat and mass transfer is also investigated.  相似文献   

4.
The effect of rotation on the onset of double diffusive convection in a sparsely packed anisotropic porous layer, which is heated and salted from below, is investigated analytically using the linear and nonlinear theories. The Brinkman model that includes the Coriolis term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and a dispersion relation are obtained analytically using linear theory. The effect of anisotropy parameters, Taylor number, Darcy number, solute Rayleigh number, Lewis number, Darcy–Prandtl number, and normalized porosity on the stationary, oscillatory and finite amplitude convection is shown graphically. It is found that contrary to its usual influence on the onset of convection in the absence of rotation, the mechanical anisotropy parameter show contrasting effect on the onset criterion at moderate and high rotation rates. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The effect of various parameters on heat and mass transfer is shown graphically. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.  相似文献   

5.
Double diffusive convection in a rotating anisotropic porous layer, saturated by a viscoelastic fluid, heated from below and cooled from above has been studied making linear and non-linear stability analyses. The fluid and solid phases are considered to be in equilibrium. In momentum equation, we have employed the Darcy equation which includes both time derivative and Coriolis terms. The linear theory based on normal mode method is considered to find the criteria for the onset of stationary and oscillatory convection. A weak non-linear analysis based on minimal representation of truncated Fourier series analysis containing only two terms has been used to find the Nusselt number and Sherwood number as functions of time. We have solved the finite amplitude equations using a numerical scheme. The results obtained, during the above analyses, have been presented graphically and the effects of various parameters on heat and mass transfer have been discussed. Finally, we have drawn the steady and unsteady streamlines, isotherms, and isohalines for various parameters.  相似文献   

6.
In the present study, double-diffusive convection in an anisotropic porous layer with an internal heat source, heated and salted from below, has been investigated. The generalized Darcy model is employed for the momentum equation. The fluid and solid phases are considered to be in equilibrium. Linear and nonlinear stability analyses have been performed. For linear theory normal mode technique has been used, while nonlinear analysis is based on a minimal representation of truncated Fourier series. Heat and mass transfers across the porous layer have been obtained in terms of Nusselt number Nu and Sherwood number Sh, respectively. The effects of internal Rayleigh number, anisotropy parameters, concentration Rayleigh number, and Vadasz number on stationary, oscillatory, and weak nonlinear convection are shown graphically. The transient behaviors of Nusselt number and Sherwood number have been investigated by solving the finite amplitude equations using a numerical method. Streamlines, isotherms, and isohalines are drawn for both steady and unsteady (time-dependent) cases. The results obtained, during the above analyses, have been presented graphically, and the effects of various parameters on heat and mass transfers have been discussed.  相似文献   

7.
Effect of rotation on linear and nonlinear instability of cross-diffusive convection in an anisotropic porous medium saturated with Newtonian fluid has been investigated. Normal mode technique has been used for linear stability analysis, however nonlinear analysis is done using spectral method, involving only two terms. The Darcy model with Coriolis terms, has been employed in the momentum equation. Nonlinear analysis is used to find the thermal and concentration Nusselt numbers. The effects of various parameters, including Soret and Dufour parameters, on stationary and oscillatory convection, have been obtained, and shown graphically.  相似文献   

8.
The free convective flow and heat transfer, within the framework of Boussinesq approximation, in an anisotropic fluid filled porous rectangular enclosure subjected to end-to-end temperature difference have been investigated using Brinkman extended non-Darcy flow model. The studies involve simultaneous consideration of hydrodynamic and thermal anisotropy. The flow and temperature fields in general are governed by, Ra, the Rayleigh number, AR, the aspect ratio of the slab, K*, the permeability ratio and k*, the thermal conductivity ratio, and Da, Darcy number. Numerical solutions employing the successive accelerated replacement (SAR) scheme have been obtained for 100 ≤ Ra ≤ 1000, 0.5 ≤ AR ≤ 5, 0.5 ≤ K* ≤ 5, 0.5 ≤ k* ≤ 5, and 0 ≤ Da ≤ 0.1. It has been found that [`(Nu)]{\overline {Nu}}, average Nusselt number increases with increase in K* and decreases as k* increases. However, the magnitude of the change in [`(Nu)]{\overline {Nu}} depends on the parameter Da, characterizing the Brinkman extended non-Darcy flow.  相似文献   

9.
The linear stability theory for the Horton–Rogers–Lapwood problem is extended to the case where the porous medium is saturated by a nanofluid with thermal conductivity and viscosity dependent on the nanoparticle volume fraction. The effects of Brownian motion and thermophoresis are considered. In conjunction with the Brownian motion, the nanoparticle fraction becomes stratified, and hence the viscosity and the conductivity are stratified. The nanofluid is assumed to be dilute and this enables the porous medium to be treated as a weakly heterogeneous medium with variation, in the vertical direction, of conductivity and viscosity. In turn this allows an approximate analytical solution to be obtained.  相似文献   

10.
The stability of a horizontal fluid saturated anisotropic porous layer heated from below and cooled from above is examined analytically when the solid and fluid phases are not in local thermal equilibrium. Darcy model with anisotropic permeability is employed to describe the flow and a two-field model is used for energy equation each representing the solid and fluid phases separately. The linear stability theory is implemented to compute the critical Rayleigh number and the corresponding wavenumber for the onset of convective motion. The effect of thermal non-equilibrium and anisotropy in both mechanical and thermal properties of the porous medium on the onset of convection is discussed. Besides, asymptotic analysis for both very small and large values of the interphase heat transfer coefficient is also presented. An excellent agreement is found between the exact and asymptotic solutions. Some known results, which correspond to thermal equilibrium and isotropic porous medium, are recovered in limiting cases.  相似文献   

11.
We consider the onset of convection in an inclined anisotropic porous layer heated from below. To date the principle axes of the permeability and diffusivity tensors have been assumed to be aligned with the coordinate directions. Therefore particular emphasis is laid upon how the basic flow and criteria for the onset of convection are altered by the presence of oblique principle axes. When these axes are not aligned with the coordinate directions and when the ratios of the principle permeabilities or diffusivities are not too large or too small, we find that there is always a smooth transition in the orientation of the most dangerous mode of instability as the inclination increases from the horizontal. In more extreme cases there may be sudden changes in the orientation, Darcy–Rayleigh number and wavenumber.  相似文献   

12.
The linear stability of the double-diffusive convection in a horizontal porous layer is studied considering the upper boundary to be open. A horizontal temperature gradient is applied along the upper boundary. It is assumed that the viscous dissipation and Soret effect are significant in the medium. The governing parameters are horizontal Rayleigh number (\(Ra_\mathrm{H}\)), solutal Rayleigh number (\(Ra_\mathrm{S}\)), Lewis number (Le), Gebhart number (Ge) and Soret parameter (Sr). The Rayleigh number (Ra) corresponding to the applied heat flux at the bottom boundary is considered as the eigenvalue. The influence of the solutal gradient caused due to the thermal diffusion on the double-diffusive instability is investigated by varying the Soret parameter. A horizontal basic flow is induced by the applied horizontal temperature gradient. The stability of this basic flow is analyzed by calculating the critical Rayleigh number (\(Ra_\mathrm{cr}\)) using the Runge–Kutta scheme accompanied by the Shooting method. The longitudinal rolls are more unstable except for some special cases. The Soret parameter has a significant effect on the stability of the flow when the upper boundary is at constant pressure. The critical Rayleigh number is decreasing in the presence of viscous dissipation except for some positive values of the Soret parameter. How a change in Soret parameter is attributing to the convective rolls is presented.  相似文献   

13.
The Brinkman extended Darcy model including Lapwood and Forchheimer inertia terms with fluid viscosity being different from effective viscosity is employed to investigate the effect of vertical throughflow on thermal convective instabilities in a porous layer. Three different types of boundary conditions (free–free, rigid–rigid and rigid–free) are considered which are either conducting or insulating to temperature perturbations. The Galerkin method is used to calculate the critical Rayleigh numbers for conducting boundaries, while closed form solutions are achieved for insulating boundaries. The relative importance of inertial resistance on convective instabilities is investigated in detail. In the case of rigid–free boundaries, it is found that throughflow is destabilizing depending on the choice of physical parameters and the model used. Further, it is noted that an increase in viscosity ratio delays the onset of convection. Standard results are also obtained as particular cases from the general model presented here.  相似文献   

14.
A theoretical analysis of convective instability driven by buoyancy forces under the transient concentration fields is conducted in an initially quiescent, liquid-saturated, and anisotropic cylindrical porous layer supported by a gas phase. Darcy’s law and Boussinesq approximation are used to explain the characteristics of fluid motion, and linear stability theory is employed to predict the onset of buoyancy-driven motion. Under the quasi-steady-state approximation, the stability equations are derived in a similar boundary layer coordinate and solved by the numerical shooting method. The critical $Ra_D$ is determined as a function of the anisotropy ratio. Also, the onset time and corresponding wavelength are obtained for the various anisotropic ratios. The onset time becomes smaller with increasing $Ra_D$ and follows the asymptotic relation derived in the infinite horizontal porous layer. Anisotropy effect makes the system more stable by suppressing the vertical velocity.  相似文献   

15.
A study of thermal instability driven by buoyancy force is carried out in an initially quiescent infinitely extended horizontal porous medium saturated with viscoelastic fluid. Modified Darcy’s law is used to explain characteristics of fluid motion. The time periodic gravity field has been considered, and its effect on the system has been investigated. A weak nonlinear stability analysis has been performed for the oscillatory mode of convection, and heat transport in terms of the Nusselt number, which is governed by the complex non-autonomous Ginzburg–Landau equation, is calculated. The influence of relaxation and retardation times of viscoelastic fluid on heat transfer has been discussed. Further, the study establishes that the heat transport can be controlled effectively by a mechanism that is external to the system. Finally, it is found that overstability advances the onset of convection, and hence increases heat transfer.  相似文献   

16.
A theoretical analysis of convective instability driven by buoyancy forces under the transient concentration fields is conducted in an initially quiescent, liquid-saturated, cylindrical porous column. Darcy’s law and Boussinesq approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the onset of buoyancy-driven motion. Under the principle of exchange of stabilities, the stability equations are derived in self-similar boundary-layer coordinate. The present predictions suggest the critical $R_D$ , and the onset time and corresponding wavenumber for a given $R_D$ . The onset time becomes smaller with increasing $R_D$ and follows the asymptotic relation derived in the infinite horizontal porous layer.  相似文献   

17.
A linear stability analysis is implemented to study thermal convective instability in a horizontal fluid-saturated rotating porous layer with throughflow in the vertical direction. The modified Forchheimer-extended Darcy equation that includes the time-derivative and Coriolis terms is employed as a momentum equation. The criterion for the occurrence of direct and Hopf bifurcations is obtained using the Galerkin method. It is shown that if a Hopf bifurcation is possible it always occurs at a lower value of the Darcy?CRayleigh number than the direct bifurcation. Increase in the throughflow strength and inertia parameter is to decrease the domain of Prandtl number up to which Hopf bifurcation is limited but opposite is the trend with increasing Taylor number. The effect of rotation is found to be stabilizing the system, in general. However, in the presence of both rotation and Forchheimer drag a small amount of vertical throughflow as well as inertia parameter show some destabilizing effect on the onset of direct bifurcation; a result of contrast noticed when they are acting in isolation. The existing results in the literature are obtained as limiting cases from the present study.  相似文献   

18.
19.
We show that for many classes of convection problem involving a porous layer, or layers, interleaved with finite but non-deformable solid layers, the global nonlinear stability threshold is exactly the same as the linear instability one. The layer(s) of porous material may be of Darcy type, Brinkman type, possess an anisotropic permeability, or even be such that they are of local thermal non-equilibrium type where the fluid and solid matrix constituting the porous material may have different temperatures. The key to the global stability result lies in proving the linear operator attached to the convection problem is a symmetric operator while the nonlinear terms must satisfy appropriate conditions.  相似文献   

20.
We consider convection in a horizontally uniform fluid-saturated porous layer which is heated from below and which is split into a number of identical sublayers by impermeable and infinitesimally thin horizontal partitions. Rees and Genç (Int J Heat Mass Transfer 54:3081–3089, 2010) determined the onset criterion by means of a detailed analytical and numerical study of the corresponding dispersion relation and showed that this layered system behaves like the single-sublayer constant-heat-flux Darcy–Bénard problem when the number of sublayers becomes large. The aim of the present work is to use a weakly nonlinear analysis to determine whether the layered system also shares the property of the single-sublayer constant-heat-flux Darcy–Bénard problem by having square cells, as opposed to rolls, as the preferred planform for convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号