首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper analyzes the steady-state behavior of a discrete-time single-server queueing system with correlated service times and server vacations. The vacation times of the server are independent and geometrically distributed, and their durations are integral multiples of slot duration. The customers are served one at a time under discrete-time Markovian service process. The new service process starts with the initial phase distribution independent of the path followed by the previous service process when the server returns from a vacation and finds at least one waiting customer. The matrix-geometric method is used to obtain the probability distribution of system-length at prearrival epoch. With the help of Markov renewal theory approach, we also derive the system-length distribution at an arbitrary epoch. The analysis of actual-waiting-time distribution in the queue measured in slots has also been carried out. In addition, computational experiences with a variety of numerical results are discussed to display the effect of the system parameters on the performance measures.  相似文献   

2.
In this paper, we consider a discrete-time finite-capacity queue with Bernoulli arrivals and batch services. In this queue, the single server has a variable service capacity and serves the customers only when the number of customers in system is at least a certain threshold value. For this queue, we first obtain the queue-length distribution just after a service completion, using the embedded Markov chain technique. Then we establish a relationship between the queue-length distribution just after a service completion and that at a random epoch, using elementary ‘rate-in = rate-out’ arguments. Based on this relationship, we obtain the queue-length distribution at a random (as well as at an arrival) epoch, from which important performance measures of practical interest, such as the mean queue length, the mean waiting time, and the loss probability, are also obtained. Sample numerical examples are presented at the end.  相似文献   

3.
In this article, we consider a single-server, finite-capacity queue with random bulk service rule where customers arrive according to a discrete-time Markovian arrival process (D-MAP). The model is denoted by D-MAP/G Y /1/M where server capacity (bulk size for service) is determined by a random variable Y at the starting point of services. A simple analysis of this model is given using the embedded Markov chain technique and the concept of the mean sojourn time of the phase of underlying Markov chain of D-MAP. A complete solution to the distribution of the number of customers in the D-MAP/G Y /1/M queue, some computational results, and performance measures such as the average number of customers in the queue and the loss probability are presented.  相似文献   

4.
This paper analyzes a single-server finite-buffer vacation (single and multiple) queue wherein the input process follows a discrete-time batch Markovian arrival process (D-BMAP). The service and vacation times are generally distributed and their durations are integral multiples of a slot duration. We obtain the state probabilities at service completion, vacation termination, arbitrary, and prearrival epochs. The loss probabilities of the first-, an arbitrary- and the last-customer in a batch, and other performance measures along with numerical aspects have been discussed. The analysis of actual waiting time of these customers in an accepted batch is also carried out.  相似文献   

5.
We consider a single server retrial queuing model in which customers arrive according to a batch Markovian arrival process. Any arriving batch finding the server busy enters into an orbit. Otherwise one customer from the arriving batch enters into service immediately while the rest join the orbit. The customers from the orbit try to reach the service later and the inter-retrial times are exponentially distributed with intensity depending (generally speaking) on the number of customers on the orbit. Additionally, the search mechanism can be switched-on at the service completion epoch with a known probability (probably depending on the number of customers on the orbit). The duration of the search is random and also probably depending on the number of customers in the orbit. The customer, which is found as the result of the search, enters the service immediately if the server is still idle. Assuming that the service times of the primary and repeated customers are generally distributed (with possibly different distributions), we perform the steady state analysis of the queueing model.  相似文献   

6.
This paper deals with an BMAP/G/1 G-queues with second optional service and multiple vacations. Arrivals of positive customers and negative customers follow a batch Markovian arrival process (BMAP) and Markovian arrival process (MAP), respectively. After completion of the essential service of a customer, it may go for a second phase of service. The arrival of a negative customer removes the customer being in service. The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. By using the supplementary variables method and the censoring technique, we obtain the queue length distributions. We obtain the mean of the busy period based on the renewal theory.  相似文献   

7.
This paper analyzes the finite-buffer single server queue with vacation(s). It is assumed that the arrivals follow a batch Markovian arrival process (BMAP) and the server serves customers according to a non-exhaustive type gated-limited service discipline. It has been also considered that the service and vacation distributions possess rational Laplace-Stieltjes transformation (LST) as these types of distributions may approximate many other distributions appeared in queueing literature. Among several batch acceptance/rejection strategies, the partial batch acceptance strategy is discussed in this paper. The service limit L (1 ≤ LN) is considered to be fixed, where N is the buffer-capacity excluding the one in service. It is assumed that in each busy period the server continues to serve until either L customers out of those that were waiting at the start of the busy period are served or the queue empties, whichever occurs first. The queue-length distribution at vacation termination/service completion epochs is determined by solving a set of linear simultaneous equations. The successive substitution method is used in the steady-state equations embedded at vacation termination/service completion epochs. The distribution of the queue-length at an arbitrary epoch has been obtained using the supplementary variable technique. The queue-length distributions at pre-arrival and post-departure epoch are also obtained. The results of the corresponding infinite-buffer queueing model have been analyzed briefly and matched with the previous model. Net profit function per unit of time is derived and an optimal service limit and buffer-capacity are obtained from a maximal expected profit. Some numerical results are presented in tabular and graphical forms.  相似文献   

8.
We consider a discrete-time single-server queueing model where arrivals are governed by a discrete Markovian arrival process (DMAP), which captures both burstiness and correlation in the interarrival times, and the service times and the vacation duration times are assumed to have a general phase-type distributions. The vacation policy is that of a working vacation policy where the server serves the customers at a lower rate during the vacation period as compared to the rate during the normal busy period. Various performance measures of this queueing system like the stationary queue length distribution, waiting time distribution and the distribution of regular busy period are derived. Through numerical experiments, certain insights are presented based on a comparison of the considered model with an equivalent model with independent arrivals, and the effect of the parameters on the performance measures of this model are analyzed.  相似文献   

9.
The Markovian arrival process (MAP) is used to represent the bursty and correlated traffic arising in modern telecommunication network. In this paper, we consider a single server finite capacity queue with general bulk service rule in which arrivals are governed by MAP and service times are arbitrarily distributed. The distributions of the number of customers in the queue at arbitrary, post-departure and pre-arrival epochs have been obtained using the supplementary variable and the embedded Markov chain techniques. Computational procedure has been given when the service time distribution is of phase type.  相似文献   

10.
For a class of discrete-time FIFO queueing systems with D-MAP (discrete-time Markovian arrival process), we present a distributional Little’s law that relates the distribution of the stationary number of customers in system (queue) with that of the stationary number of slots a customer spends in system (queue). Taking the multi-server D-MAP/D/c queue as an example, we demonstrate how this relation can be utilized to get the desired distribution of the number of customers. Sample numerical results are presented at the end.  相似文献   

11.
离散时间排队MAP/PH/3   总被引:1,自引:0,他引:1  
本文研究具有马尔可夫到达过程的离散时间排队MAP/PH/3,系统中有三个服务台,每个服务台对顾客的服务时间均服从位相型分布。运用矩阵几何解的理论,我们给出了系统平稳的充要条件和系统的稳态队长分布。同时我们也给出了到达顾客所见队长分布和平均等待时间。  相似文献   

12.
In this paper, we consider an MAP/G/1 G-queues with possible preemptive resume service discipline and multiple vacations wherein the arrival process of negative customers is Markovian arrival process (MAP). The arrival of a negative customer may remove the customer being in service. The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. The service and vacation times are arbitrarily distributed. We obtain the queue length distributions with the method of supplementary variables, combined with the matrix-analytic method and censoring technique. We also obtain the mean of the busy period based on the renewal theory. Finally we provide expressions for a special case.  相似文献   

13.
In this paper, we consider a BMAP/G/1 G-queue with setup times and multiple vacations. Arrivals of positive customers and negative customers follow a batch Markovian arrival process (BMAP) and Markovian arrival process (MAP) respectively. The arrival of a negative customer removes all the customers in the system when the server is working. The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. By using the supplementary variables method and the censoring technique, we obtain the queue length distributions. We also obtain the mean of the busy period based on the renewal theory.  相似文献   

14.
This paper applies a matrix-analytical approach to analyze the packet loss pattern of finite buffer single server queue with discrete-time batch Markovian arrival process (DBMAP). The service process is correlated and its structure is presented through discrete-time Markovian service process (DMSP). The bursty nature of packet loss pattern will be examined by means of statistics with respect to alternating loss periods and loss distances. The loss period is the period that loss once it starts; loss distance refers to the spacing between the loss periods. All of the two related performance measurement are derived, including probability distributions of a loss period and a loss distance, average length of a loss period and a loss distance. Queueing systems of this type arise in the domain of wireless local communications. Based on the numerical analysis of such a queueing system, some performance measures for the wireless local communication are presented.  相似文献   

15.
In this paper, we consider a single server queuing model with an infinite buffer in which customers arrive according to a batch Markovian arrival process (BMAP). The services are offered in two modes. In mode 1, the customers are served one at a time and in mode 2 customers are served in groups of varying sizes. Various costs for holding, service and switching are imposed. For a given hysteretic strategy, we derive an expression for the cost function from which an optimal hysteretic control can be obtained. Illustrative numerical examples are presented.  相似文献   

16.
A multi-server queueing system with a Markovian arrival process and finite and infinite buffers to model a call center with a call-back option is investigated. If all servers are busy during the customer arrival epoch, the customer may leave the system forever or move to the buffer (such a customer is referred to as a real customer), or, alternatively, request for call-back (such a customer is referred to as a virtual customer). During a waiting period, a real customer can be impatient and may leave the system without service or request for call-back (becomes a virtual customer). The service time of a customer and the dial time to a virtual customer for a server have a phase-type distribution. To simplify the investigation of the system we introduce the notion of a generalized phase-type service time distribution. We determine the stationary distribution of the system states and derive the Laplace–Stieltjes transforms of the sojourn and waiting time distributions for real and virtual customers. Some key performance measures are calculated and numerical results are presented.  相似文献   

17.
The problem with the FCFS server discipline in discrete-time queueing systems is that it doesn’t actually determine what happens if multiple customers enter the system at the same time, which in the discrete-time paradigm translates into ‘during the same time-slot’. In other words, it doesn’t specify in which order such customers are served. When we consider multiple types of customers, each requiring different service time distributions, the precise order of service even starts to affect quantities such as queue content and delays of arbitrary customers, so specifying this order will be prime. In this paper we study a multi-class discrete-time queueing system with a general independent arrival process and generally distributed service times. The service discipline is FCFS and customers entering during the same time-slot are served in random order. It will be our goal to search for the steady-state distribution of queue content and delays of certain types of customers. If one thinks of the time-slot as a continuous but bounded time period, the random order of service is equivalent to FCFS if different customers have different arrival epochs within this time-slot and if the arrival epochs are independent of customer class. For this reason we propose two distinct ways of analysing; one utilizing permutations, the other considering a slot as a bounded continuous time frame.  相似文献   

18.
We study the matched queueing system GIoPH/PH/1, where the type-I input is a renewal process, the type-II input is a PH renewal process, and the service times are i.i.d. random variables with PH-distributions. First, a condition is given for the stationarity of the system. Then the distributions of the number of type-I customers at the arrival epoches of type-I customers and the number of type-I customers at an arbitrary epoch are derived. We also discuss the occupation time and the waiting time. Their L.S. transforms are derived. Finally, we discuss some problems in numerical computation.This research is supported by the National Natural Science Foundation of China and partially by the Institute of Mathematics, the Chinese Academy of Sciences.  相似文献   

19.
We consider a finite-buffer single-server queue with renewal input where the service is provided in batches of random size according to batch Markovian service process (BMSP). Steady-state distribution of number of customers in the system at pre-arrival and arbitrary epochs have been obtained along with some important performance measures. The model has potential applications in the areas of computer networks, telecommunication systems, and manufacturing systems, etc.   相似文献   

20.
This paper examines an M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 − p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the Jth vacation, the server becomes idle in the system. Whenever one or more customers arrive at server idle state, the server immediately starts providing service for the arrivals. Assume that the server may meet an unpredictable breakdown according to a Poisson process and the repair time has a general distribution. For such a system, we derive the distributions of important system characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, the distributions of idle period, busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (pJ) at a minimum cost, and some numerical examples are presented for illustrative purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号