首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A linear map \({\phi}\) of operator algebras is said to preserve numerical radius (or to be a numerical radius isometry) if \({w(\phi(A))=w(A)}\) for all A in its domain algebra, where w(A) stands for the numerical radius of A. In this paper, we prove that a surjective linear map \({\phi}\) of the nest algebra \({{\rm Alg}\mathcal N}\) onto itself preserves numerical radius if and only if there exist a unitary U and a complex number ξ of modulus one such that \({\phi(A)= \xi UAU^*}\) for all \({A\in{\rm Alg}\mathcal N}\), or there exist a unitary U, a conjugation J and a complex number ξ of modulus one such that \({\phi(A)=\xi UJA^*JU^*}\) for all \({A\in{\rm Alg}\mathcal N}\).  相似文献   

2.
Let \({\mathbb{K}}\) be a field and \({S=\mathbb{K}[x_1,\dots,x_n]}\) be the polynomial ring in n variables over \({\mathbb{K}}\). Let G be a graph with n vertices. Assume that \({I=I(G)}\) is the edge ideal of G and \({J=J(G)}\) is its cover ideal. We prove that \({{\rm sdepth}(J)\geq n-\nu_{o}(G)}\) and \({{\rm sdepth}(S/J)\geq n-\nu_{o}(G)-1}\), where \({\nu_{o}(G)}\) is the ordered matching number of G. We also prove the inequalities \({{\rmsdepth}(J^k)\geq {\rm depth}(J^k)}\) and \({{\rm sdepth}(S/J^k)\geq {\rmdepth}(S/J^k)}\), for every integer \({k\gg 0}\), when G is a bipartite graph. Moreover, we provide an elementary proof for the known inequality reg\({(S/I)\leq \nu_{o}(G)}\).  相似文献   

3.
Let A and B be non-negative self-adjoint operators in a separable Hilbert space such that their form sum C is densely defined. It is shown that the Trotter product formula holds for imaginary parameter values in the L 2-norm, that is, one has
$ \lim_{n\to+\infty} \int\limits^T_{-T} \left\|\left(e^{-itA/n}e^{-itB/n} \right)^nh - e^{-itC}h\right\|^2dt = 0 $
for each element h of the Hilbert space and any T > 0. This result is extended to the class of holomorphic Kato functions, to which the exponential function belongs. Moreover, for a class of admissible functions: \({\phi(\cdot),\psi(\cdot):{\mathbb R}_+ \longrightarrow {\mathbb C}}\), where \({{\mathbb R}_+ := [0,\infty)}\), satisfying in addition \({{\Re{\rm e}}\,(\phi(y))\ge 0, {\Im{\rm m}}\,(\phi(y) \le 0}\) and \({{\Im{\rm m}}\,(\psi(y)) \le 0}\) for \({y \in {\mathbb R}_+}\), we prove that
$ \,\mbox{\rm s-}\hspace{-2pt} \lim_{n\to\infty}(\phi(tA/n)\psi(tB/n))^n = e^{-itC} $
holds true uniformly on \({[0,T]\ni t}\) for any T > 0.
  相似文献   

4.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

5.
We consider various aspects of the Segre variety \({\mathcal{S}:=\mathcal{S} _{1,1,1}(2)}\) in PG(7, 2), whose stabilizer group \({\mathcal{G}_{\mathcal{S}}<{\rm GL}(8,2)}\) has the structure \({\mathcal{N}\rtimes{\rm Sym}(3),}\) where \({\mathcal{N} :={\rm GL}(2,2)\times{\rm GL}(2,2)\times{\rm GL} (2,2).}\) In particular we prove that \({\mathcal{S}}\) determines a distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2)}\) such that \({A\mathcal{Z}A^{-1}=\mathcal{Z},}\) for all \({A\in\mathcal{G}_{\mathcal{S}},}\) and in consequence \({\mathcal{S}}\) determines a \({\mathcal{G}_{\mathcal{S}}}\)-invariant spread of 85 lines in PG(7, 2). Furthermore we see that Segre varieties \({\mathcal{S}_{1,1,1}(2)}\) in PG(7, 2) come along in triplets \({\{\mathcal{S},\mathcal{S}^{\prime},\mathcal{S}^{\prime\prime}\}}\) which share the same distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2).}\) We conclude by determining all fifteen \({\mathcal{G}_{\mathcal{S}}}\)-invariant polynomial functions on PG(7, 2) which have degree < 8, and their relation to the five \({\mathcal{G}_{\mathcal{S}}}\)-orbits of points in PG(7, 2).  相似文献   

6.
A string is a pair \({(L, \mathfrak{m})}\) where \({L \in[0, \infty]}\) and \({\mathfrak{m}}\) is a positive, possibly unbounded, Borel measure supported on [0, L]; we think of L as the length of the string and of \({\mathfrak{m}}\) as its mass density. To each string a differential operator acting in the space \({L^2(\mathfrak{m})}\) is associated. Namely, the Kre?n–Feller differential operator \({-D_{\mathfrak{m}}D_x}\) ; its eigenvalue equation can be written, e.g., as
$$f^{\prime}(x) + z \int_0^L f(y)\,d\mathfrak{m}(y) = 0,\quad x \in\mathbb R,\ f^{\prime}(0-) = 0.$$
A positive Borel measure τ on \({\mathbb R}\) is called a (canonical) spectral measure of the string \({\textsc S[L, \mathfrak{m}]}\) , if there exists an appropriately normalized Fourier transform of \({L^2(\mathfrak{m})}\) onto L 2(τ). In order that a given positive Borel measure τ is a spectral measure of some string, it is necessary that: (1) \({\int_{\mathbb R} \frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) . (2) Either \({{\rm supp} \tau \subseteq [0, \infty)}\) , or τ is discrete and has exactly one point mass in (?∞, 0). It is a deep result, going back to Kre?n in the 1950’s, that each measure with \({\int_{\mathbb R}\frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) and \({{\rm supp} \tau \subseteq [0, \infty)}\) is a spectral measure of some string, and that this string is uniquely determined by τ. The question remained open, which conditions characterize whether a measure τ with \({{\rm supp} \tau \not\subseteq [0, \infty)}\) is a spectral measure of some string. In the present paper, we answer this question. Interestingly, the solution is much more involved than the first guess might suggest.
  相似文献   

7.
First, we establish necessary and sufficient conditions for embeddings of Bessel potential spaces \({H^{\sigma}X(\mathbb R^n)}\) with order of smoothness less than one, modelled upon rearrangement invariant Banach function spaces \({X(\mathbb R^n)}\), into generalized Hölder spaces. To this end, we derive a sharp estimate of modulus of smoothness of the convolution of a function \({f\in X(\mathbb R^n)}\) with the Bessel potential kernel g σ , 0 < σ < 1. Such an estimate states that if \({g_{\sigma}}\) belongs to the associate space of X, then
$\omega(f*g_{\sigma},t)\precsim \int\limits_0^{t^n}s^{\frac{\sigma}{n}-1}f^*(s)\,ds \quad {\rm for\,all} \quad t\in(0,1) \quad {\rm and\,every}\quad f\in X(\mathbb R^n).$
Second, we characterize compact subsets of generalized Hölder spaces and then we derive necessary and sufficient conditions for compact embeddings of Bessel potential spaces \({H^{\sigma}X(\mathbb R^n)}\) into generalized Hölder spaces. We apply our results to the case when \({X(\mathbb R^n)}\) is the Lorentz–Karamata space \({L_{p,q;b}(\mathbb R^n)}\). In particular, we are able to characterize optimal embeddings of Bessel potential spaces \({H^{\sigma}L_{p,q;b}(\mathbb R^n)}\) into generalized Hölder spaces and also compact embeddings of spaces in question. Applications cover both superlimiting and limiting cases.
  相似文献   

8.
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product \({\phi}\) on the Dirichlet space D. We prove that any two distinct nontrivial minimal reducing subspaces of \({M_\phi}\) are orthogonal. When the order n of \({\phi}\) is 2 or 3, we show that \({M_\phi}\) is reducible on D if and only if \({\phi}\) is equivalent to \({z^n}\). When the order of \({\phi}\) is 4, we determine the reducing subspaces for \({M_\phi}\), and we see that in this case \({M_\phi}\) can be reducible on D when \({\phi}\) is not equivalent to \({z^4}\). The same phenomenon happens when the order n of \({\phi}\) is not a prime number. Furthermore, we show that \({M_\phi}\) is unitarily equivalent to \({M_{z^n} (n > 1)}\) on D if and only if \({\phi = az^n}\) for some unimodular constant a.  相似文献   

9.
Let \({\mathcal{M}}\) be a semifinite von Neumann algebra with a faithful, normal, semifinite trace \({\tau}\) and E be a strongly symmetric Banach function space on \({[0,\tau({\bf 1}))}\) . We show that an operator x in the unit sphere of \({E(\mathcal{M}, \tau)}\) is k-extreme, \({k \in {\mathbb{N}}}\) , whenever its singular value function \({\mu(x)}\) is k-extreme and one of the following conditions hold (i) \({\mu(\infty, x) = \lim_{t\to\infty}\mu(t, x) = 0}\) or (ii) \({n(x)\mathcal{M}n(x^*) = 0}\) and \({|x| \geq \mu(\infty, x)s(x)}\) , where n(x) and s(x) are null and support projections of x, respectively. The converse is true whenever \({\mathcal{M}}\) is non-atomic. The global k-rotundity property follows, that is if \({\mathcal{M}}\) is non-atomic then E is k-rotund if and only if \(E(\mathcal{M}, \tau)\) is k-rotund. As a consequence of the noncommutative results we obtain that f is a k-extreme point of the unit ball of the strongly symmetric function space E if and only if its decreasing rearrangement \({\mu(f)}\) is k-extreme and \({|f| \geq \mu(\infty,f)}\) . We conclude with the corollary on orbits Ω(g) and Ω′(g). We get that f is a k-extreme point of the orbit \({\Omega(g),\,g \in L_1 + L_{\infty}}\) , or \({\Omega'(g),\,g \in L_1[0, \alpha),\,\alpha < \infty}\) , if and only if \({\mu(f) = \mu(g)}\) and \({|f| \geq \mu(\infty, f)}\) . From this we obtain a characterization of k-extreme points in Marcinkiewicz spaces.  相似文献   

10.
Let X be a non-void set and A be a subalgebra of \({\mathbb{C}^{X}}\) . We call a \({\mathbb{C}}\) -linear functional \({\varphi}\) on A a 1-evaluation if \({\varphi(f) \in f(X) }\) for all \({f\in A}\) . From the classical Gleason–Kahane–?elazko theorem, it follows that if X in addition is a compact Hausdorff space then a mapping \({\varphi}\) of \({C_{\mathbb{C}}(X) }\) into \({\mathbb{C}}\) is a 1-evaluation if and only if \({\varphi}\) is a \({\mathbb{C}}\) -homomorphism. In this paper, we aim to investigate the extent to which this equivalence between 1-evaluations and \({\mathbb{C}}\) -homomorphisms can be generalized to a wider class of self-conjugate subalgebras of \({\mathbb{C}^{X}}\) . In this regards, we prove that a \({\mathbb{C}}\) -linear functional on a self-conjugate subalgebra A of \({\mathbb{C}^{X}}\) is a positive \({\mathbb{C}}\) -homomorphism if and only if \({\varphi}\) is a \({\overline{1}}\) -evaluation, that is, \({\varphi(f) \in\overline{f\left(X\right)}}\) for all \({f\in A}\) . As consequences of our general study, we prove that 1-evaluations and \({\mathbb{C}}\) -homomorphisms on \({C_{\mathbb{C}}\left( X\right)}\) coincide for any topological space X and we get a new characterization of realcompact topological spaces.  相似文献   

11.
Let B be an Archimedean reduced f-ring. A positive element \({\omega}\) in B is said to satisfy the property \({(\ast)}\) if for every f-ring A with identity e and every \({\ell}\)-group homomorphism \({\gamma : A \rightarrow B}\) with \({\gamma(e) = \omega}\), there exists a unique \({\ell}\)-ring homomorphism \({\rho: B \rightarrow B}\) such that \({\gamma = \omega \rho}\) and \({\rho(e)^{\perp \perp} = \omega^{\perp \perp}}\). Boulabiar and Hager proved that any (positive) von Neumann regular element in B satisfies the property \({(\ast)}\) and proved that the converse holds in the C(X)-case. In this regard, they asked about this converse in the general case. Our main purpose in this note is to prove, via a counter-example, that the converse in question fails in general. In addition, we shall take the opportunity to extend the direct result obtained by Boulabiar and Hager, and to get the C(X)-case we were talking about in an easier way.  相似文献   

12.
Let \({g \in G}\) , where G is an arbitrary finite group. Then there exists \({\chi \in {\rm Irr} (G)}\) such that \({{\rm ker}(\chi) \cap \langle g \rangle = 1}\) and every prime divisor of the order o(g) divides the codegree of χ. This improves a recent result of Qian, in which G was assumed to be solvable.  相似文献   

13.
Let \({\Omega^i\subset {\bf R}^n, i\in\{1,2\}}\) , be two (δ, r 0)-Reifenberg flat domains, for some \({0 < \delta < \hat \delta}\) and r 0 > 0, assume \({\Omega^1\cap\Omega^2=\emptyset}\) and that, for some \({w\in {\bf R}^n}\) and some 0 < r, \({w\in\partial\Omega^1\cap\partial\Omega^2, \partial\Omega^1\cap B(w,2r)=\partial\Omega^2\cap B(w,2r)}\) . Let p, 1 < p < ∞, be given and let u i , \({i\in\{1,2\}}\) , denote a non-negative p-harmonic function in Ω i , assume that u i , \({i\in\{1,2\}}\), is continuous in \({\bar\Omega^i\cap B(w,2r) }\) and that u i  = 0 on \({\partial\Omega^i\cap B(w,2r)}\) . Extend u i to B(w, 2r) by defining \({u^i\equiv 0}\) on \({B(w,2r) {\setminus} \Omega^i}\). Then there exists a unique finite positive Borel measure μ i , \({i\in\{1,2\}}\) , on R n , with support in \({\partial\Omega^i\cap B(w,2r)}\) , such that if \({\phi \in C_0^\infty (B(w,2r))}\) , then
$\int\limits_{\mathbf R^n} \,|\nabla u^i|^{ p-2} \,\langle \nabla u^i, \,\nabla \phi \rangle \,dx =- \int\limits_{\mathbf R^n} \,\phi \,d \mu^i.$
Let \({\Delta(w,2r)=\partial\Omega^1\cap B(w,2r)=\partial\Omega^2\cap B(w,2r)}\) . The main result proved in this paper is the following. Assume that μ 2 is absolutely continuous with respect to μ 1 on Δ(w, 2r), d μ 2 = kd μ 1 for μ 1-almost every point in Δ(w, 2r) and that \({\log k\in VMO(\Delta(w,r),\mu^1)}\) . Then there exists \({\tilde \delta = \tilde \delta(p,n) > 0}\) , \({\tilde \delta < \hat \delta}\) , such that if \({\delta\leq\tilde\delta}\) , then Δ(w, r/2) is Reifenberg flat with vanishing constant. Moreover, the special case p = 2, i.e., the linear case and the corresponding problem for harmonic measures, has previously been studied in Kenig and Toro (J Reine Angew Math 596:1–44, 2006).
  相似文献   

14.
Let \({\phi : M \to R^{n+p}(c)}\) be an n-dimensional submanifold in an (n + p)-dimensional space form R n+p(c) with the induced metric g. Willmore functional of \({\phi}\) is \({W(\phi) = \int_{M}(S - nH^{2})^{n/2}dv}\) , where \({S = \sum_{\alpha,i, j}(h^{\alpha}_{ij} )^2}\) is the square of the length of the second fundamental form, H is the mean curvature of M. The Weyl functional of (M, g) is \({\nu(g) = \int_{M}|W_{g}|^{n/2}dv}\) , where \({|W_{g}|^{2} = \sum_{i, j,k,l} W^{2}_{ijkl}}\) and W ijkl are the components of the Weyl curvature tensor W g of (M, g). In this paper, we discover an inequality relation between Willmore functional \({W(\phi)}\) and Weyl funtional ν(g).  相似文献   

15.
In the unit cone\({\mathcal{C} := \{(x, y, z)} \in {\mathbb R}^{3} : {x}^{2} + {y}^{2} < {z}^{2}, {z} > {0}\}\) we establish a geometric maximum principle for H-surfaces, where its mean curvature \({H = H(x, y, z)}\) is optimally bounded. Consequently, these surfaces cannot touch the conical boundary \({\partial \mathcal{C}}\) at interior points and have to approach \({\partial \mathcal{C}}\) transversally. By a nonlinear continuity method, we then solve the Dirichlet problem of the H-surface equation in central projection for Jordan-domains \({\Omega}\) which are strictly convex in the following sense: On its whole boundary \({\partial \mathcal{C}(\Omega)}\) their associate cone \({\mathcal{C}(\Omega) := \{(rx, ry, r) \in {\mathbb R}^{3} : (x, y) \in \Omega, r \in (0,+\infty)}\}\) admits rotated unit cones \({O \circ \mathcal{C}}\) as solids of support, where \({O \in {\mathbb R}^{3\times3}}\) represents a rotation in the Euclidean space. Thus we construct the unique H-surface with one-to-one central projection onto these domains \({\Omega}\) bounding a given Jordan-contour \({\Gamma \subset \mathcal{C} \backslash \{0\}}\) with one-toone central projection.  相似文献   

16.
We consider the problem
$$\varepsilon^{2s} (-\partial_{xx})^s \tilde{u}(\tilde{x}) -V(\tilde{x})\tilde{u}(\tilde{x})(1-\tilde{u}^2(\tilde{x}))=0 \quad{\rm in} \mathbb{R},$$
where \({(-\partial_{xx})^s}\) denotes the usual fractional Laplace operator, \({\varepsilon > 0}\) is a small parameter and the smooth bounded function V satisfies \({{\rm inf}_{\tilde{x} \in \mathbb{R}}V(\tilde{x}) > 0}\). For \({s\in(\frac{1}{2},1)}\), we prove the existence of separate multi-layered solutions for any small \({\varepsilon}\), where the layers are located near any non-degenerate local maximal points and non-degenerate local minimal points of function V. We also prove the existence of clustering-layered solutions, and these clustering layers appear within a very small neighborhood of a local maximum point of V.
  相似文献   

17.
Let \({p \in (1,\infty)}\), \({s \in (0,1)}\) and \({\Omega \subset {\mathbb{R}^{N}}}\) a bounded open set with boundary \({\partial\Omega}\) of class C 1,1. In the first part of the article we prove an integration by parts formula for the fractional p-Laplace operator \({(-\Delta)_{p}^{s}}\) defined on \({\Omega \subset {\mathbb{R}^{N}}}\) and acting on functions that do not necessarily vanish at the boundary \({\partial\Omega}\). In the second part of the article we use the above mentioned integration by parts formula to clarify the fractional Neumann and Robin boundary conditions associated with the fractional p-Laplacian on open sets.  相似文献   

18.
Let (M, g 0) be a compact Riemann surface with boundary and with negative Euler characteristic. Let f(x) be a strictly negative smooth function on \({\bar{M}}\) and denote by \({\sigma(x)}\) the value of f in the interior and \({\zeta(x)}\) the value of f on the boundary. By studying the evolution of curvatures on M, we prove that there exist a constant \({\lambda_\infty}\) and a conformal metric \({g_\infty}\) such that \({\lambda_\infty\sigma(x)}\) and \({\lambda_\infty\zeta(x)}\) can be realized as the Gaussian curvature and boundary geodesic curvature of \({g_\infty}\) respectively.  相似文献   

19.
Let R be a commutative ring and let \({n >1}\) be an integer. We introduce a simple graph, denoted by \({\Gamma_t(M_n(R))}\), which we call the trace graph of the matrix ring \({M_n(R)}\), such that its vertex set is \({M_n(R)^{\ast}}\) and such that two distinct vertices A and B are joined by an edge if and only if \({{\rm Tr} (AB)=0}\) where \({ {\rm Tr} (AB)}\) denotes the trace of the matrix AB. We prove that \({\Gamma_t(M_n(R))}\) is connected with \({{\rm diam}(\Gamma_{t}(M_{n}(R)))=2}\) and \({{\rm gr} (\Gamma_t(M_n(R)))=3}\). We investigate also the interplay between the ring-theoretic properties of R and the graph-theoretic properties of \({\Gamma_t(M_n(R))}\). Hence, we use the notion of the irregularity index of a graph to characterize rings with exactly one nontrivial ideal.  相似文献   

20.
Using the periodic unfolding method of Cioranescu, Damlamian and Griso, we study the homogenization for equations of the form
$-{\rm div}\,\,d_\varepsilon=f,\,\,{\rm with}\,\,\left(\nabla u_{\varepsilon , \delta }(x),d_{\varepsilon , \delta }(x)\right) \in A_\varepsilon(x)$
in a perforated domain with holes of size \({\varepsilon \delta }\) periodically distributed in the domain, where \({A_\varepsilon }\) is a function whose values are maximal monotone graphs (on R N ). Two different unfolding operators are involved in such a geometric situation. Under appropriate growth and coercivity assumptions, if the corresponding two sequences of unfolded maximal monotone graphs converge in the graph sense to the maximal monotone graphs A(x, y) and A 0(x, z) for almost every \({(x,y,z)\in \Omega \times Y \times {\rm {\bf R}}^N}\), as \({\varepsilon \to 0}\), then every cluster point (u 0, d 0) of the sequence \({(u_{\varepsilon , \delta }, d_{\varepsilon , \delta } )}\) for the weak topology in the naturally associated Sobolev space is a solution of the homogenized problem which is expressed in terms of u 0 alone. This result applies to the case where \({A_{\varepsilon}(x)}\) is of the form \({B(x/\varepsilon)}\) where B(y) is periodic and continuous at y = 0, and, in particular, to the oscillating p-Laplacian.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号