首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrophoretic separations on microfluidic chips   总被引:1,自引:0,他引:1  
Wu D  Qin J  Lin B 《Journal of chromatography. A》2008,1184(1-2):542-559
This review presents a brief outline and novel developments of electrophoretic separation in microfluidic chips. Distinct characteristics of microchip electrophoresis (MCE) are discussed first, in which sample injection plug, joule heat, channel turn, surface adsorption and modification are introduced, and some successful strategies and recognized conclusions are also included. Important achievements of microfluidic electrophoresis separation in small molecules, DNA and protein are then summarized. This review is aimed at researchers, who are interested in MCE and want to adopt MCE as a functional unit in their integrated microsystems.  相似文献   

2.
Gao Y  Shen Z  Wang H  Dai Z  Lin B 《Electrophoresis》2005,26(24):4774-4779
Chiral separations of FITC-labeled basic drugs on multichannel microfluidic chips with LIF detector were investigated. A preliminary screening procedure for seven neutral CDs was performed under optimized conditions for chiral separations of three FITC-labeled drugs (baclofen, norfenefrine, and tocainide) on a mono-channel microfluidic chip. According to the results of screening, FITC-baclofen and FITC-norfenefrine as well as two chiral selectors including gamma-CD and dimethyl-beta-CD (DM-beta-CD) were selected as models to perform chiral separations on a two-channel chip. FITC-baclofen enantiomers were separated completely by gamma-CD in one channel, while resolution of FITC-norfenefrine enantiomers was achieved by DM-beta-CD in the other channel in the same run. Furthermore, the feasibility of using one chiral selector to separate multiple chiral samples was studied on a four-channel chip. These results show that multichannel chip has a potential for chiral high-throughput screening.  相似文献   

3.
Electrophoretic separations of neuromediators on microfluidic devices   总被引:1,自引:0,他引:1  
In the present work, on-chip capillary electrophoresis for the separation of neuromediators is demonstrated. The influence of separation buffer (composition, pH, SDS additive), on-chip electrokinetic sample stacking, and surface pretreatment of the PDMS-PDMS and hybrid PDMS-glass devices on the electrokinetic characteristics of microfluidics (νeo, μeo, ζ) and separation performance of on-chip capillary electrophoresis of neuromediators have been investigated. It is demonstrated that for the effective separation of neuropeptides on elastomer-based microfluidic devices, on-chip sample stacking is necessary. Field-amplified sample stacking for electroosmotic flow supported on-chip separations of neuromediators and without special design of the sample injection scheme has been demonstrated. Electrophoretic separations of fluorescently labeled analytes have been achieved within tens of seconds at injection volumes of about 110 pL, with plate numbers varying from <1000 to ∼22,000. These results demonstrate that on-chip separation methods with hybrid PDMS-glass devices are perspective for the analysis of (neuro)peptides in small volumes.  相似文献   

4.
Kvasnicka F 《Electrophoresis》2007,28(20):3581-3589
CE is a family of electrokinetic separation techniques that separate compounds based upon differences in electrophoretic mobilities, phase partitioning, pI, molecular size, or a combination of one or several of these properties. CE has been used in several modes to analyze and characterize a wide variety of analytes from simple inorganic ions, small organic molecules, peptides, proteins, nucleic acids to virus, microbes and particles. Food consists of a complex mixture of a variety of components, many of which are biologically active. Components classified as "nutrients" are essential for growth, maintenance, and repair of the body. Other food constituents, typically occurring in small quantities, are classified as "biologically active substances" and they have beneficial or harmful effects on human health. There are two types of biologically active substances in food - naturally occurring and food additives. The bioactive compounds of food that will be mentioned in this review are inorganic and organic acids, amino acids, vitamins, phenolic compounds, biogenic amines, antinutrients, toxins, etc. This review is focused on the application of CE with hydrodynamically closed system (suppression of EOF) for the analysis of the above-mentioned compounds. CE can be an alternative method to HPLC or other methods for analysis of bioactive compounds in food. The main advantages of CE are low running cost (at least ten times than HPLC) and consideration to environment (hundreds of microliters of diluted water based electrolyte per analysis).  相似文献   

5.
Capillary isotachophoresis with coupled columns provides efficient means for rapid electrophoretic analysis of sample volumes of up to 10 μl or more. Commercially available instruments are commonly equipped with conductivity and UV absorbance detectors; however, their on-line coupling with electrospray mass spectrometry is highly desirable. In this work we have modified the commercial coupled column isotachophoresis system for direct connection to an ion trap mass spectrometer. The design included attachment of an elution block with a short capillary transfer line directing the separated zones towards the mass spectrometer. The modification further included separation of the injection and electrode blocks from the separation columns by semipermeable membranes eliminating unwanted fluid movements in the wide bore fluoropolymer separation capillaries. Fused silica capillaries with varying internal diameter were connected as a transfer line between the elution block and mass spectrometer. The transfer line served also as the ESI tip of the sheathless electrospray interface. During the analysis the first, wide bore preseparation capillary with 0.8 mm internal diameter served for removal of the bulk sample components and preseparation of the potentially interfering analytes. After the electronic column switching the separation was finished in a 0.3 mm internal diameter capillary and the separated ITP zones were transferred in-line by a spray liquid towards the mass spectrometer. The instrumentation was tested for determination of vitamins in whole blood analysis and separation of tryptic peptides.  相似文献   

6.
An analytical method, based on a column coupling capillary ITP and CZE in a hydrodynamically closed separation mode hyphenated with the detection in the modular arrangement, was developed in this work. Analytical possibilities of this approach are demonstrated on the direct and ultrasensitive quantitative determination of quinine (QUI) in diluted real multicomponent ionic matrices (beverages, urine). The detection cell interface, with the rectangular arrangement of the optical channels inside, connected the separation capillary with the LIF detector via optical fibers in the on‐column detection arrangement. ITP enabled the direct large volume (30 μL) injections of the diluted real matrices with an on‐line sample pretreatment (preseparation, preconcentration) so that no external sample preparation (except for the dilution) was necessary for the separation of the analyte in the multicomponent ionic matrices. Due to the ITP sample preconcentration and intrinsic sensitivity of the LIF detection, very low concentration LOD (as low as 77 pg/mL), were reached at the same time. This was ca. two orders lower than the corresponding LOD achieved by the same 2D separation system with UV absorbance detection. Compared to the single column CE‐LIF methods applied for this model analyte and matrix, this method was found to be superior in terms of concentration LOD, with acceptable selectivity and benefits of the on‐line sample preparation. A food control and bioanalytical application clearly illustrates great practical possibilities and routine use of the proposed modular ITP–CZE–LIF technique.  相似文献   

7.
Unusual effects of separation conditions on chiral separations   总被引:4,自引:0,他引:4  
Unusual effects in liquid chromatographic separations of enantiomers on chiral stationary phases are reviewed with emphasis on polysaccharide phases. On protein phases and Pirkle phases reversal of the elution order between enantiomers due to variation of temperature and mobile phase composition has been reported. Most of the nonanticipated observations have dealt with the widely used polysaccharide phases. Reversed retention order and other stereoselective effects have been observed by variation of temperature, organic modifier and water content in nonpolar organic mobile phases.  相似文献   

8.
Microfluidic devices have been fabricated on polycarbonate (PC) substrates by use of a hot embossing method using a silicon master template. By adding auxiliary lines around the functional channel on the silicon master, its lifetime was significantly prolonged and the bonding strength of the PC cover plate to the microfluidic chip was greatly improved. More than 300 polycarbonate microfluidic chips have been replicated with the same silicon mold. CE separation of X-174/HaeIII DNA restriction fragments, with high resolution efficiency and good reproducibility, was achieved on these devices using the low-viscosity sieving matrix HPMC-50. Temperature was found to have a significant effect on separation efficiency.  相似文献   

9.
The electrophoretic separation of radioactive rare earths on Cellogel in α-hydroxyisobutyric acid is described. Minute amounts of radioactive daughter nuclides are separated from the neutron-irradiated rare earth target materials, the ratio of the substances being 105∶1 to 107∶1. The suggested method is simple, rapid and suitable for analytical purposes.  相似文献   

10.
The Raipore R1030 membrane, an anion-exchange membrane containing ammonium groups as ionogenic groups, was evaluated as the interface of an optical sensor for Cr(VI), and the effect of chemical parameters affecting Cr(VI) transport were studied. Good transport features were obtained, demonstrating the suitability of the Raipore R1030 membrane for this application. Thus, an optical sensor for chromium(VI) monitoring in industrial process waters was developed. The sensor is based on the renewable reagent approach and uses the Raipore R1030 membrane as the interface between the sample and the sensor head, which contains 1,5-diphenylcarbazide as spectrophotometric reagent for chromium. Chromium(VI) crosses the membrane and reacts with the reagent inside the sensor head, resulting in changes in the absorption of light. These changes are monitored in situ through a system of optical fibers. The sensor performance was tested by analysing samples from a waste water treatment plant for effluents from electroplating industries.  相似文献   

11.
The use of a poly(methylmethacrylate) chip, provided with a pair of on-line coupled separation channels and on-column conductivity detectors, to isotachophoresis (ITP) separations of optical isomers was investigated. Single-column ITP, ITP in the tandem-coupled columns, and concentration-cascade ITP in the tandem-coupled columns were employed in this investigation using tryptophan enantiomers as model analytes. Although providing a high production rate (about 2 pmol of a pure tryptophan enantiomer separated per second), single-column ITP was found suitable only to the analysis of samples containing the enantiomers at close concentrations. A 94-mm separation path in ITP with the tandem-coupled separation channels made possible a complete resolution of a 1.5 nmol amount of the racemic mixture of the enantiomers. However, this led only to a moderate extension of the concentration range within which the enantiomers could be simultaneously quantified. The best results in this respect were achieved by using a concentration-cascade of the leading anions in the tandem-coupled separation channels. Here, a high production rate, favored in the first separation channel, was followed by the ITP migration of the enantiomers in the second channel under the electrolyte conditions enhancing their detectabilities. In dependence on the migration configuration of the enantiomers, this technique made possible their simultaneous determinations when their ratios in the loaded sample were 35:1 or less (D-tryptophan a major constituent) and 70:1 or less (L-tryptophan a major constituent).  相似文献   

12.
13.
Two capillary electrophoresis methods for monitoring renally excreted varenicline, a highly effective drug prescribed for smoking cessation, in human urine were developed and compared. A method combining capillary electrophoresis with mass spectrometry was proposed for the fast analysis of varenicline (analysis time up to 7 min). Here, mass spectrometry was a prerequisite for achieving high sensitivity and selectivity of the analysis suitable for the quantification of a 15 ng/mL level of varenicline in un‐pretreated urine matrices. An alternative approach, two‐dimensional (column‐coupled) capillary electrophoresis with enhanced sample load capacity and ultraviolet detection, was proposed as a low‐cost alternative to capillary electrophoresis with mass spectrometry. The isotachophoresis on‐line sample treatment included simple elimination of the major matrix constituents and stacking of the sample in a large volume so that threefold lower quantitation limits could be easily achieved in comparison to the capillary electrophoresis with mass spectrometry. On the other hand, longer analysis time (ca. 4.5‐fold) and more complex electrolyte system in the coupled zone electrophoresis step (including two additives enhancing separation selectivity, i.e. isopropanol and cyclodextrin) were prerequisites for the complete separation of varenicline from the sample matrix. Anyway, both the developed methods were validated according to the Food and Drug Administration guidelines showing favorable performance parameters, suitable for their routine biomedical use.  相似文献   

14.
This article reviews progress in the application of electrophoretic techniques for the separation of nanoparticles. Numerous types of nanoparticles have recently been synthesised and integrated into different products and procedures. Consequently, analytical methods for the efficient characterisation of nanoparticles are now required. Several studies have revealed that gel electrophoresis can readily be used for separating nanoparticles according to their size or shape. However, many other studies focused on separation of nanoparticles by CE. In some cases nanoparticles could be separated by CZE, simply using pure buffer as the BGE. In other studies, buffer additives (most often SDS) were used, enabling fast separations of metallic nanoparticles by size. Other CE methods also allowed for separation of nanoparticle conjugates with biomolecules. Dielectrophoresis is yet another electrophoretic technique useful in separation and characterisation of nanoparticles; particularly nanotubes. Detection methods often used after electrophoretic separation include UV/Vis absorption and fluorescence spectroscopy. Examples of recent and relevant older reports are presented here. The authors conclude that electrophoretic methods for nanoanalysis can provide inexpensive and efficient tools for quality assurance and safety control; and as a consequence, they can augment transfer of nanotechnologies from research to industry.  相似文献   

15.
Summary Gliadin is a group of polymorphic proteins that are commonly used for the preparation of many pharmaceutical and cosmetic products. The aim of this study was to develop an analytical HPCE procedure for the identification and quantification of gliadin samples. For this purpose, the HPCE buffer composition were optimised to improve the resolution of separations. There-fore, several buffer modifiers were tested for use with 50 mM phosphate buffer in HPCE separations. Twenty percent acetonitrile and 0.05% hydroxypropylmethyl-cellulose provided optimal resolution while maintaining excellent reproducibility. In conclusion, this method can be successfully applied to the elucidation of the different gliadin fractions in protein isolates and nanoparticulate dosage forms.  相似文献   

16.
17.
The precise design and operational control of the separation process of liquid matrices is key to the performance of on-chip liquid analysis. Present research attempts from the engineering point of view to investigate of the process occurring in the microfluidic channels for chip design with the best separation efficiency. An one-dimensional model of electrokinetic sample motion was developed to simulate the separation process of sample containing amino acids (tryptophan, tyrosine, proline, methionine) that migrate in a buffer solution through a straight separation channel made of poly(methyl methacrylate) within a microfluidic chip under different conditions. On the basis of the simulations by the finite-difference method the effects of the channel size, the chip material, the applied voltage difference and the test solution pH on separation rate are discussed. It was found that for the channel length of 2 cm the resolution of peaks is optimal and the fastest time of amino acids separation is 4 s.  相似文献   

18.
The enantiomeric separation of chiral pharmaceuticals was investigated using dual systems with mixtures of cyclodextrin derivatives. The dual cyclodextrin systems, consisting of one highly-sulfated (α-, β-, and γ-HSCD) and one neutral cyclodextrin, i.e. either heptakis (2,3,6-tri-O-methyl)-β-CD (TMCD), heptakis (2,6-di-O-methyl)-β-CD (DMCD) or hydroxypropyl-β-CD (HPCD), are tested on 25 pharmaceutical compounds with different acid-basic properties (16 basics, 8 acids and 1 neutral). The influence on the separation of the type and concentration of neutral CD in highly-sulfated cyclodextrins-based dual selector systems, is investigated. For 11 of 16 basic compounds, a better separation is obtained with the CD mixtures compared to the use of only a highly-sulfated CD. Mixtures with TMCD give better results than those with DMCD and HPCD. Results showed that dual CD systems are useful to achieve and to optimise chiral separations of compounds not (sufficiently) separated with HSCDs alone. For example, ibuprofen was not resolved with α-, β- or γ-HSCD, but could be separated with the mixture 25 mM TMCD and 5% HS-β-CD. Based on the obtained results, a dual CD systems based separation strategy is defined.  相似文献   

19.
In this prospective study, for the first time we have separated and quantified amyloid beta (Abeta) peptides in the plasma of patients with Alzheimer's disease (AD, n = 8) and age- and environment-matched healthy controls (n = 9) with urea-based Abeta-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/immunoblot. In addition to the Abeta peptides 1-37/38/39/40/42, which we recently identified as regular constituents of human cerebrospinal fluid (CSF), we have observed a novel electrophoretic band migrating slightly cathodically to Abeta1-42. Since a standard peptide with the amino acid sequence Abeta2-40 migrates in the same position, we hypothesize that this plasma-specific band may correspond to Abeta2-40. The concentration of Abeta peptides in the plasma has been approximately 100-fold lower compared to the CSF. Interestingly, the concentration of the two shortest peptides and the longest one of these considered here (i.e., Abeta1-37/38/42) have increased significantly when the samples have been frozen at -80 degrees C before immunoprecipitation, while the 'middle-length' peptides (i.e., Abeta1-39/40) have not been affected by this procedure. We have not observed significant differences of the Abeta peptides concentrations between AD and control subjects. Our method can be used to investigate the significance of plasma Abeta peptides in neurodegenerative disorders, and to monitor the efficiency of drugs with beta/gamma-secretase inhibitory potency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号