首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
The title molecular complex, [CoCl2(C22H18N6O)], features a novel 18‐membered Co‐containing metallocycle. The CoII atom lies in a fairly regular tetrahedral geometry defined by two imidazole N‐atom donors from one 2,5‐bis[3‐(1H‐1,3‐imidazol‐1‐ylmethyl)phenyl]‐1,3,4‐oxadiazole (L) ligand and two chloride anions. The coordinating orientation of the L ligand plays an important role in constructing the metallocycle complex. The complexes form a three‐dimensional supramolecular assembly via nonclassical C—H...Cl and C—H...N hydrogen bonds and π–π interactions.  相似文献   

2.
The title copper(II) complex, {[CuCl(C15H16N4O2)]Cl·0.61H2O}n, is a one‐dimensional zigzag coordination polymer structure extending along the (010) direction. The CuII atom has a square‐pyramidal geometry, where the basal plane is formed by two cis N atoms and one O atom from the ligand, and by a Cl atom. The apical position is occupied by a carbonyl O atom from a symmetry‐related molecule. In the crystal structure, there are O—H...Cl and N—H...Cl hydrogen bonds, which link parallel polymer chains along the c direction, so building a two‐dimensional structure via the interstitial Cl atoms.  相似文献   

3.
Both title compounds are derivatives of salicylic acid. 5‐Formylsalicylic acid (systematic name: 5‐formyl‐2‐hydroxybenzoic acid), C8H6O4, possesses three good hydrogen‐bond donors and/or acceptors coplanar with their attached benzene ring and abides very well by Etter's hydrogen‐bond rules. Intermolecular O—H...O and some weak C—H...O hydrogen bonds link the molecules into a planar sheet. Reaction of this acid and o‐phenylenediamine in refluxing ethanol produced in high yield the new zwitterionic compound 5‐(benzimidazolium‐2‐yl)salicylate [systematic name: 5‐(1H‐benzimidazol‐3‐ium‐2‐yl)‐2‐hydroxybenzoate], C14H10N2O3. Each imidazolium N—H group and its adjacent salicyl C—H group chelate one carboxylate O atom via hydrogen bonds, forming seven‐membered rings. As a result of steric hindrance, the planes of the molecules within these pairs of hydrogen‐bonded molecules are inclined to one another by ∼74°. There are also π–π stacking interactions between the parallel planes of the imidazole ring and the benzene ring of the salicyl component of the adjacent molecule on one side and the benzimidazolium component of the molecule on the other side.  相似文献   

4.
The asymmetric unit of the title compound, C12H18O2, contains two independent molecules. They differ only slightly in conformation but form completely different intermolecular hydrogen‐bonded arrays. One molecule exhibits disorder in the hydroxy group region, but this does not influence the formation of hydrogen bonds. The bulky tert‐butyl group on one side of the carbinol C atom and the benzene ring on the other side promote the formation of discrete dimeric motifs via hydrogen‐bridged hydroxy groups. Dimers are further joined by strong hydroxy–methoxy O—H...O bonds to form chains with dangling alcohol groups. Weaker intermolecular C—H...O interactions mediate the formation of a two‐dimensional network.  相似文献   

5.
In the title compound, also known as N‐carbamoyl‐l ‐proline, C6H10N2O3, the pyrrolidine ring adopts a half‐chair conformation, whereas the carboxyl group and the mean plane of the ureide group form an angle of 80.1 (2)°. Molecules are joined by N—H...O and O—H...O hydrogen bonds into cyclic structures with graph‐set R22(8), forming chains in the b‐axis direction that are further connected via N—H...O hydrogen bonds into a three‐dimensional network.  相似文献   

6.
In the title complex, [Ni(H2O)6](C6H10N2O6PS)2·6H2O, the asymmetric unit consists of one‐half of an Ni atom (which lies on an inversion centre) with three coordinated water molecules, one complete 2‐carboxylato‐2‐(isothiouronium‐S‐ylmethyl)propane‐1,3‐diyl phosphate anion and three noncoordinated water molecules. The hexaaquanickel(II) cations have distorted octahedral coordination and are connected via water chains to form two‐dimensional supramolecular networks parallel to the ab plane. The phosphate ester anion is linked via N—H...O and O—H...O hydrogen bonds, thus creating various ring, dimer and chain hydrogen‐bonding patterns, and building up a second two‐dimensional supramolecular network parallel to the ab plane. The crystal structure is further stabilized by an intra‐ and interlayer hydrogen‐bond network. This work illustrates that a carboxylate with a caged phosphate ester can open its ring in the presence of dichloridotetrakis(thiourea)nickel, and the resulting polyfunctional anion can be used for constructing a complex hydrogen‐bonding scheme.  相似文献   

7.
The title compounds, dimethylammonium 2‐{4‐[1‐(4‐carboxymethoxyphenyl)‐1‐methylethyl]phenoxy}acetate, C2H8N+·C19H19O6, (I), and 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid–4,4′‐bipyridine (1/1), C19H20O6·C10H8N2, (II), are 1:1 adducts of 2,2′‐[isopropylidenebis(p‐phenyleneoxy)]diacetic acid (H2L) with dimethylammonium or 4,4′‐bipyridine. The component ions in (I) are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into continuous two‐dimensional layers parallel to the (001) plane. Adjacent layers are stacked via C—H...O hydrogen bonds into a three‐dimensional network with an –ABAB– alternation of the two‐dimensional layers. In (II), two H2L molecules, one bipy molecule and two half bipy molecules are linked by O—H...N hydrogen bonds into one‐dimensional chains and rectanglar‐shaped rings. They are assembled viaπ–π stacking interactions and C—H...O hydrogen bonds into an intriguing zero‐dimensional plus one‐dimensional poly(pseudo)rotaxane motif.  相似文献   

8.
The title compound, [Zn(C9H7N3)2(H2O)4](CF3O3S)2, contains an octahedral [ZnL2(H2O)4]2+ cationic complex with trans geometry (Zn site symmetry ), and each 5‐(3‐pyridyl)pyrimidine (L) ligand is coordinated in a monodentate fashion through the pyridine N atom. In the extended structure, these complexes, with both hydrogen‐bond acceptor (pyrimidine) and donor (H2O) functions, are linked to each other by intermolecular water–pyrimidine O—H...N hydrogen‐bonding interactions, resulting in a double chain along the crystallographic a axis. The trifluoromethanesulfonate anions are integrated into the chains via O—H...O hydrogen bonds between the coordinated water and sulfonate O atoms. These double chains are associated into a novel three‐dimensional network through interchain water–pyrimidine O—H...N hydrogen bonds. The asymmetric ligand plays an important role in constructing this unusual supramolecular structure.  相似文献   

9.
The title compound, C21H26FN3O7, is assembled by N—H...O and O—H...O hydrogen bonds into well‐separated two‐dimensional layers of about 15 Å thickness. The crescent conformation of the molecules is stabilized by weak intramolecular C—H...O and C—H...F hydrogen bonds. The uridine moiety adopts an anti conformation. The ribofuranose ring exists in an envelope conformation. All the endocyclic uracil bonds are shorter than normal single C—N and C—C bonds, and five of them have comparable lengths, which implies a considerable degree of delocalization of the electron density within this ring.  相似文献   

10.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

11.
The four isomers 2,4‐, (I), 2,5‐, (II), 3,4‐, (III), and 3,5‐difluoro‐N‐(3‐pyridyl)benzamide, (IV), all with formula C12H8F2N2O, display molecular similarity, with interplanar angles between the C6/C5N rings ranging from 2.94 (11)° in (IV) to 4.48 (18)° in (I), although the amide group is twisted from either plane by 18.0 (2)–27.3 (3)°. Compounds (I) and (II) are isostructural but are not isomorphous. Intermolecular N—H...O=C interactions form one‐dimensional C(4) chains along [010]. The only other significant interaction is C—H...F. The pyridyl (py) N atom does not participate in hydrogen bonding; the closest H...Npy contact is 2.71 Å in (I) and 2.69 Å in (II). Packing of pairs of one‐dimensional chains in a herring‐bone fashion occurs viaπ‐stacking interactions. Compounds (III) and (IV) are essentially isomorphous (their a and b unit‐cell lengths differ by 9%, due mainly to 3,4‐F2 and 3,5‐F2 substitution patterns in the arene ring) and are quasi‐isostructural. In (III), benzene rotational disorder is present, with the meta F atom occupying both 3‐ and 5‐F positions with site occupancies of 0.809 (4) and 0.191 (4), respectively. The N—H...Npy intermolecular interactions dominate as C(5) chains in tandem with C—H...Npy interactions. C—H...O=C interactions form R22(8) rings about inversion centres, and there are π–π stacks about inversion centres, all combining to form a three‐dimensional network. By contrast, (IV) has no strong hydrogen bonds; the N—H...Npy interaction is 0.3 Å longer than in (III). The carbonyl O atom participates only in weak interactions and is surrounded in a square‐pyramidal contact geometry with two intramolecular and three intermolecular C—H...O=C interactions. Compounds (III) and (IV) are interesting examples of two isomers with similar unit‐cell parameters and gross packing but which display quite different intermolecular interactions at the primary level due to subtle packing differences at the atom/group/ring level arising from differences in the peripheral ring‐substitution patterns.  相似文献   

12.
In the title complex, mer‐diaqua[2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylato(2−)]bis(1H‐imidazole‐κN3)cobalt(II), [Co(C5H2N2O4)(C3H4N2)2(H2O)2], the CoII ion is coordinated by a deprotonated N atom and the carboxylate O atom of the orotate ligand, two imidazole N atoms and two aqua ligands in a distorted octahedral geometry. The title complex exists as discrete doubly hydrogen‐bonded dimers, and a three‐dimensional network of O—H...O and N—H...O hydrogen bonds and weak π–π interactions is responsible for crystal stabilization.  相似文献   

13.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

14.
The title complex, [Cu(ClO4)2(C9H13N5O)(CH3OH)], was synthesized from a methanolysis reaction of N‐(methylpyridin‐2‐yl)cyanoguanidine (L3) and copper(II) perchlorate hexahydrate in a 1:1 molar ratio. The CuII ion is six‐coordinated by an N3O3 donor set which confers a highly distorted and asymmetric octahedral geometry. Three N‐donor atoms from the chelating 1‐(methoxymethanimidoyl)‐2‐(pyridin‐2‐ylmethyl)guanidine (L3m) ligand and one O atom from the methanol molecule define the equatorial plane, with two perchlorate O atoms in the apical sites, one of which has a long Cu—O bond of 2.9074 (19) Å. The dihedral angle between the five‐ and six‐membered chelate rings is 8.21 (8)°. Two molecules are associated into a dimeric unit by intermolecular N—H...O(perchlorate) hydrogen bonds. Additionally, the weakly coordinated perchlorate anions also link adjacent [Cu(ClO4)2(L3m)(CH3OH)] dimers by hydrogen‐bonding interactions, resulting in a two‐dimensional layer in the (100) plane. Further C—H...O hydrogen bonds link the two‐dimensional layers along [100] to generate a three‐dimensional network.  相似文献   

15.
The title compound, C19H21N3O4S, crystallizes in the space group P2/c with two molecules in the asymmetric unit. The conformation of both molecules is very similar and is mainly determined by an intramolecular N—H...O hydrogen bond between a urea N atom and a sulfonyl O atom. The O and second N atom of the urea groups are involved in dimer formation via N—H...O hydrogen bonds. The intramolecular hydrogen‐bonding motif and conformation of the C—SO2—NH(C=O)—NH—C fragment are explored and compared using the Cambridge Structural Database and theoretical calculations. The crystal packing is characterized by π–π stacking between the 5‐cyanobenzene rings.  相似文献   

16.
In the title compound, C23H19N5O6·H2O, the two components are linked into complex chains by a combination of two independent O—H...O and two independent N—H...O hydrogen bonds. The complex chains are linked into a two‐dimensional sheet network viaπ–π stacking interactions and C—H...O hydrogen bonds.  相似文献   

17.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

18.
In the title compound, C29H35ClN4O2, the bond lengths provide evidence for aromatic delocalization in the pyrazole ring but bond fixation in the fused imidazole ring, and the octyl chain is folded, rather than adopting an all‐trans chain‐extended conformation. A combination of N—H...N, C—H...N and C—H...O hydrogen bonds links the molecules into sheets, in which the hydrogen bonds occupy the central layer with the tert‐butyl and octyl groups arranged on either side, such that the closest contacts between adjacent sheets involve only the octyl groups. Comparisons are made with the supramolecular assembly in some simpler analogues.  相似文献   

19.
The molecular dimensions of both 2‐amino‐6‐(N‐methylanilino)pyrimidin‐4(3H)‐one, C11H12N4O, (I), and 2‐amino‐6‐(N‐methylanilino)‐5‐nitropyrimidin‐4(3H)‐one, C11H11N5O3, (II), are consistent with considerable polarization of the molecular–electronic structures. The molecules of (I) are linked into a three‐dimensional framework by a combination of one N—H...N hydrogen bond, two independent N—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (II) are linked into ribbons containing three types of edge‐fused ring by the combination of two independent three‐centre N—H...(O)2 hydrogen bonds.  相似文献   

20.
Heteroannularly substituted ferrocene derivatives can act as model systems for various hydrogen‐bonded assemblies of biomol­ecules formed, for instance, by means of O—H⋯O and N—H⋯O hydrogen bonding. The crystal structure analysis of 1′‐(tert‐butoxy­carbonyl­amino)­ferrocene‐1‐carbox­ylic acid, [Fe(C10H14NO2)(C6H5O2)] or (C5H4COOH)Fe(C5­H4NHCOOC(CH3)3, reveals two independent mol­ecules within the asymmetric unit, and these are joined into discrete dimers by two types of intermolecular hydrogen bonds, viz. O—H⋯O and N—H⋯O. The –COOH and –NHCOOR groups are archetypes for dimer formation via two eight‐membered rings. The O—H⋯O hydrogen bonds [2.656 (3) and 2.663 (3) Å] form a cyclic carboxylic acid dimer motif. Another eight‐membered ring is formed by N—H⋯O hydrogen bonds [2.827 (3) and 2.854 (3) Å] between the N—H group and an O atom of another carbamoyl moiety. The dimers are assembled in a herring‐bone fashion in the bc plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号