首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The crystal and molecular structure of the title compound, (CH7N4)(CH8N4)[SbCl6], has been determined at 295 and 92 K. It is composed of isolated [SbCl6]3? octahedra and amino­guanidinium mono‐ and dications. One of four of the crystallographically inequivalent amino­guanidinium cations is disordered at both temperatures. Two crystallographically inequivalent [SbCl6]3? octahedra were found to possess three significantly longer Sb—Cl bonds than three other octahedra. The shorter bonds are in the range 2.456 (2)–2.577 (2) Å, whereas the longer ones are between 2.705 (2) and 2.931 (2) Å. Each short Sb—Cl bond is located trans to a long bond. It is argued that this deformation is caused by N—H?Cl hydrogen bonds.  相似文献   

2.
In (1,4,7,10,13,16‐hexaoxacyclooctadecane)rubidium hexachloridoantimonate(V), [Rb(C12H24O6)][SbCl6], (1), and its isomorphous caesium {(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium hexachloridoantimonate(V), [Cs(C12H24O6)][SbCl6]}, (2), and ammonium {ammonium hexachloridoantimonate(V)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1), (NH4)[SbCl6]·C12H24O6}, (3), analogues, the hexachloridoantimonate(V) anions and 18‐crown‐6 molecules reside across axes passing through the Sb atoms and the centroids of the 18‐crown‐6 groups, both of which coincide with centres of inversion. The Rb+ [in (1)], Cs+ [in (2)] and NH4+ [in (3)] cations are situated inside the cavity of the 18‐crown‐6 ring; they are situated on axes and are equally disordered about centres of inversion, deviating from the centroid of the 18‐crown‐6 molecule by 0.4808 (13), 0.9344 (7) and 0.515 (8) Å, respectively. Interaction of the ammonium cation and the 18‐crown‐6 group is supported by three equivalent hydrogen bonds [N...O = 2.928 (3) Å and N—H...O = 162°]. The centrosymmetric structure of [Cs(18‐crown‐6)]+, with the large Cs+ cation approaching the centre of the ligand cavity, is unprecedented and accompanied by unusually short Cs—O bonds [2.939 (2) and 3.091 (2) Å]. For all three compounds, the [M(18‐crown‐6)]+ cations and [SbCl6] anions afford linear stacks along the c axis, with the cationic complexes embedded between pairs of inversion‐related anions.  相似文献   

3.
In the title compound, [Fe(C5H5)2]2[SbCl4]2[SbCl3], the cyclo­penta­dienyl rings in both cations are parallel, with a nearly eclipsed conformation. The Sb3+ ions are coordinated by six Cl? ions to form octahedral arrangements, of which two are slightly distorted. These octahedra form infinite chains along the c axis through Cl—Sb—Cl bridges.  相似文献   

4.
In the title compound, (C6H8N4)[AuCl4]Cl, the 4,4′‐bi(1H‐pyrazol‐2‐ium) dication, denoted [H2bpz]2+, is situated across a centre of inversion, the [AuCl4] anion lies across a twofold axis passing through Cl—Au—Cl, and the Cl anion resides on a twofold axis. Conventional N—H...Cl hydrogen bonding [N...Cl = 3.109 (3) and 3.127 (3) Å, and N—H...Cl = 151 and 155°] between [H2bpz]2+ cations (square‐planar node) and chloride anions (tetrahedral node), as complementary donors and acceptors of four hydrogen bonds, leads to a three‐dimensional binodal four‐connected framework with cooperite topology (three‐letter notation pts). The framework contains channels along the c axis housing one‐dimensional stacks of square‐planar [AuCl4] anions [Au—Cl = 2.2895 (10)–2.2903 (16) Å; interanion Au...Cl contact = 3.489 (2) Å], which are excluded from primary hydrogen bonding with the [H2bpz]2+ tectons.  相似文献   

5.
The Crystal Structure of the 1:1 Addition Compound between Antimony Trichloride and Diphenylammonium Chloride, SbCl3 · (C6H5)2NH2+Cl? The 1:1 addition compound between antimony trichloride and diphenylammoniumchloride SbCl3 · (C6H5)2NH2+Cl? crystallizes in the monoclinic space group P21/n with a = 5.668(8), b = 20.480(12), c = 14.448(17) Å, β = 110.4(1)° and Z = 4 formula units. Chains of SbCl3 molecules and anion cation chains are bridged by Cl ions and form square tubes. The coordination of the Sb atoms by Cl atoms by Cl atoms and Cl ions is distorted octahedral. Mean distances are Sb? Cl = 2.37 Å for Sb? Cl (3×), 3.09 Å for Sb…Cl? (2×) and 3.42 Å for Sb…Cl (1×). The Sb…Cl? contacts and hydrogen bonds NH…Cl? at 3.15 Å generate tetrahedral coordination of the Cl ions.  相似文献   

6.
Chloroantimonates(III): Crystal Structure of 4,4′-Dipyridylium Pentachloroantimonate, (C10H8N2H2)SbCl5 (C10H8N2H2)SbCl5 crystallizes in the triclinic space group P1 with a= 843.1(5), b = 958.6(8), c = 1098.0(10) pm, α = 112.45(6), β = 101.95(6), γ = 97.78(6)° and Z = 2. The structure is built up of 4,4 °-dipyridylium cations and pentachloroantimonate anions. The Sb atoms are distorted octahedrally coordinated. Mean distances are Sb? Cl = 242 pm (1×), Sb? Cl = 255 pm (2×), Sb ? Cl = 275 pm (2×) and Sb…?Cl.= 319 pm (1× ). The anions build up dimers.  相似文献   

7.
Nalidixium tetrachloroantimonate monohydrate, (C12H13N2O3)SbCl4 · H2O, has been synthesized and its crystal structure has been determined. The structure is built of the [Sb2Cl8]2? anions, C12H13N2O 3 + nalidixium cations, and H2O molecules joint by hydrogen bonds and π-π-and Cl?Cl interactions. The [Sb2Cl8]2? anion is a dimer of the SbCl5 E distorted octahedra sharing common Cl?Cl edge (E is the lone electron pair). The Sb polyhedra contain two short Sb-Cl bonds (2.387 and 2.395 Å), one bond of a medium length (2.508 Å), and two long bridging bonds (2.745 and 3.054 Å).  相似文献   

8.
1-Ethylpiperazinediium pentachloroantimonate (III) monohydrate, C6H16N2SbCl5·H2O, has been synthesized by the reaction of antimony trioxide (Sb2O3) and 1-ethylpiperazine in an aqueous solution of hydrochloric acid. The structure crystallizes in orthorhombic system, in the non-centrosymmetric space group Pca21 and consists of isolated [C6H16N2]2+ cations, square pyramidal [SbCl5]2− anions and lattice water molecules. OH⋯Cl hydrogen bonds link the [SbCl5]2− anions and water molecules to form double chains stretching along the [101] direction. The chains in turn are linked to the organic cations via NH⋯Cl, CH⋯Cl, CH⋯O and NH⋯O hydrogen bonds to form a three-dimensional network. This structure presents an example of a general square pyramidal complex ion containing a stereo-chemically active lone pair of electrons. Solid state 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure, and vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and IR absorption bands. The interactions variability of the two independent cations and ten chloride atoms is analyzed via Hirshfeld surface analysis.  相似文献   

9.
The crystal structures of the title compounds, (C2N3H8)2[CuCl4], (I), and (C8H14N4)[CuCl4], (II), have been studied by X‐ray diffraction. The structures consist of discrete [CuCl4]2? anions with two monoprotonated (C2N3H8)+ cations for (I) and a diprotonated (C8N4H14)2+ cation for (II). The [CuCl4]2? anions of both compounds have flattened tetrahedral geometries. There are several N—H?Cl weak bonds that join the [CuCl4]2? anions and the organic cations helping retain the pseudo‐tetrahedral geometries of the anions.  相似文献   

10.
The reaction of diphenylditelluride with pyridine, 2‐bromopyridine or 2‐bromopyridine/tetraamminedichlorocobalt(III) chloride in 12 M hydrochloric acid afforded the tetrachlorophenyltellurate(IV) compounds [C5NH6][PhTeCl4] ( 1 ), [2‐Br‐C5NH5] [PhTeCl4] ( 2 ), and [{2‐Br‐C5NH5}{Co(NH3)4Cl2}] [PhTeCl4]2 ( 3 ). They were all characterized structurally by single crystal X‐ray diffraction. In all structures, the arrangement about the tellurium atoms is square pyramidal. The [PhTeCl4] anions in 1 and 2 form trimeric and dimeric units, respectively, through Te···Cl secondary bonding. Compound 3 shows an unusual face‐to‐face packing of the [PhTeCl4]anions with hydrogen bonding to the bromopyridium cation.  相似文献   

11.
Crystal structure of (C6H5NH3)3[SbCl5]Cl·H2O is determined by X-ray analysis (a = 9.4155(13) Å, b = 11.4344(16) Å, c = 13.1584(18) Å, α = 113.483(2)°, β = 90.383(2)°, γ = 97.323(2)°, space group P \(\bar 1\), Z = 2, ρcalc = 1.642 g/cm3). The crystal structure is based on [SbCl5]2? anions, anilinium cations (C6H5NH3)+, isolated Cl? anions, and water molecules. Structural features responsible for spectral and luminescent properties of the complex are discussed.  相似文献   

12.
The title compound, (C6H9N2S)[ZnCl3{SC(NH2)2}], exists as a zincate where the zinc(II) centre is coordinated by three chloride ligands and a thiourea ligand to form the anion. The organic cation adopts the protonated 4,6‐dimethyl‐2‐sulfanylidenepyrimidin‐1‐ium (L) form of 4,6‐dimethylpyrimidine‐2(1H)‐thione. Two short N—H...Cl hydrogen bonds involving the pyrimidine H atoms and the [ZnCl3L] anion form a crystallographically centrosymmetric dimeric unit consisting of two anions and two cations. The packing structure is completed by longer‐range hydrogen bonds donated by the thiourea NH2 groups to chloride ligand hydrogen‐bond acceptors.  相似文献   

13.
In the title compound, C4H12N22+·2C8H7O3?·2CH4O, the cations lie across centres of inversion and are disordered over two orientations with equal occupancy; there are equal numbers of (R)‐ and (S)‐mandelate anions present (mandelate is α‐hydroxy­benzene­acetate). The anions and the neutral water mol­ecules are linked by O—H?O hydrogen bonds [O?O 2.658 (3) and 2.682 (3) Å, and O—H?O 176 and 166°] into deeply folded zigzag chains. Each orientation of the cation forms two symmetry‐related two‐centre N—H?O hydrogen bonds [N?O 2.588 (4) and 2.678 (4) Å, and N—H?O 177 and 171°] and two asymmetric, but planar, three‐centre N—H?(O)2 hydrogen bonds [N?O 2.686 (4)–3.137 (4) Å and N—H?O 137–147°], and by means of these the cations link the anion/water chains into bilayers.  相似文献   

14.
In bis(2‐carboxypyridinium) hexafluorosilicate, 2C6H6NO2+·SiF62−, (I), and bis(2‐carboxyquinolinium) hexafluorosilicate dihydrate, 2C10H8NO2+·SiF62−·2H2O, (II), the Si atoms of the anions reside on crystallographic centres of inversion. Primary inter‐ion interactions in (I) occur via strong N—H...F and O—H...F hydrogen bonds, generating corrugated layers incorporating [SiF6]2− anions as four‐connected net nodes and organic cations as simple links in between. In (II), a set of strong N—H...F, O—H...O and O—H...F hydrogen bonds, involving water molecules, gives a three‐dimensional heterocoordinated rutile‐like framework that integrates [SiF6]2− anions as six‐connected and water molecules as three‐connected nodes. The carboxyl groups of the cation are hydrogen bonded to the water molecule [O...O = 2.5533 (13) Å], while the N—H group supports direct bonding to the anion [N...F = 2.7061 (12) Å].  相似文献   

15.
The structure of bis(dimethylammonium) pentachloroantimonate(III), [(CH3)2NH2]2[SbCl5], BDP, was studied at 15 K and ambient pressure by single-crystal X-ray diffraction as well as at ambient temperature and high pressures up to 4.87(5) GPa by Raman spectroscopy. BDP crystallizes in the orthorhombic Pnma space group with a=8.4069(4), b=11.7973(7), c=14.8496(7) Å, and Z=4; R1=0.0381, wR2=0.0764. The structure consists of distorted [SbCl6]3− octahedra forming zig-zag [{SbCl5}n]2n chains that are cross-linked by dimethylammonium [(CH3)2NH2]+ cations. The organic and inorganic substructures are bound together by the N-H…Cl hydrogen bonds. The distortions of [SbCl6]3− units increase, partly due to the influence of the hydrogen bonds which became stronger, with decreasing temperature. The preliminary room temperature, high-pressure X-ray diffraction experiments suggest that BDP undergoes a first-order phase transition below ca. 0.44(5) GPa that destroys single-crystal samples. The transition is accompanied by changes in the intensities and positions of the Raman lines below 400 cm−1.  相似文献   

16.
The crystal structure of bis­(benzyl­ammonium) hexa­chloro­tin(IV), (C7H7NH3)2[SnCl6], exhibits ionic layers separated by hydro­carbon layers. The hydro­carbon layer contains two crystallographically inequivalent benzyl groups and aromatic π–π stacking interactions are observed in this layer. In the inorganic layer, the ammonium groups interact with isolated tilted [SnCl6]2− octahedra through normal, bifurcated and trifurcated N—H⋯Cl hydrogen bonds.  相似文献   

17.
The salts [Cu(phen)3][Cu(pheida)2]·10H2O ( 1 ) and [(phen)2Cu(μ‐BAAP)Cu(μ‐BAAP)Cu(phen)2][Cu(BAAP)2]·8.5H2O ( 2 ) (H2pheida = N‐phenetyl‐iminodiacetic acid, H2BAAP = N‐benzylaminoacetic‐2‐propionic acid, phen = 1, 10‐phenanthroline) have been prepared and studied by thermal, spectroscopic and X‐ray diffraction methods. 1 has the rather unusual [Cu(phen)3]2+ cation and two non‐equivalent [Cu(pheida)2]2— anions with a coordination type 4+2 but quite different tetragonality (T = 0.848 and 0.703 for anions 1 and 2, respectively). The crystal consists of multi‐π, π‐stacked chains (…anion 2 — cation — cation — anion 2…) connected by hydrophobic interactions; these chains build channels which are partially filled by anions 1 and water molecules. In contrast, compound 2 has a mixed‐ligand trinuclear cation with a bridging central moiety close similar to the counter anion. The formation of such a trinuclear cation is discussed as a consequence of the most advantageous molecular recognition process between [Cu(phen)2(H2O)1 or 2]2+ and [Cu(BAAP)2]2— in solution. In the crystal of 2, multi‐π, π‐stacked arrays of C6‐rings from phen and (BAAP)2— ligands of trinuclear cations generate channels where counter anions and water molecules are located.  相似文献   

18.
In the structure of the complex of dibenzo‐18‐crown‐6 [systematic name: 2,5,8,15,18,21‐hexaoxatricyclo[20.4.0.09,14]hexacosa‐1(26),9,11,13,22,24‐hexaene] with 4‐methoxyanilinium tetrafluoroborate, C7H10NO+·BF4·C20H24O6, the protonated 4‐methoxyanilinium (MB‐NH3+) cation forms a 1:1 supramolecular rotator–stator complex with the dibenzo‐18‐crown‐6 molecule via N—H...O hydrogen bonds. The MB‐NH3+ group is attached from the convex side of the bowl‐shaped crown, in contrast with similar ammonium cations that nest in the curvature of the bowl. The cations are associated via C—H...π interactions, while the cations and anions are linked by weak C—H...F hydrogen bonds, forming cation–crown–anion chains parallel to [011].  相似文献   

19.
To enable a comparison between a C—H…X hydrogen bond and a halogen bond, the structures of two fluorous‐substituted pyridinium iodide salts have been determined. 4‐[(2,2‐Difluoroethoxy)methyl]pyridinium iodide, C8H10F2NO+·I, (1), has a –CH2OCH2CF2H substituent at the para position of the pyridinium ring and 4‐[(3‐chloro‐2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium iodide, C9H9ClF4NO+·I, (2), has a –CH2OCH2CF2CF2Cl substituent at the para position of the pyridinium ring. In salt (1), the iodide anion is involved in one N—H…I and three C—H…I hydrogen bonds, which, together with C—H…F hydrogen bonds, link the cations and anions into a three‐dimensional network. For salt (2), the iodide anion is involved in one N—H…I hydrogen bond, two C—H…I hydrogen bonds and one C—Cl…I halogen bond; additional C—H…F and C—F…F interactions link the cations and anions into a three‐dimensional arrangement.  相似文献   

20.
Structures having the unusual protonated 4‐arsonoanilinium species, namely in the hydrochloride salt, C6H9AsNO3+·Cl, (I), and the complex salts formed from the reaction of (4‐aminophenyl)arsonic acid (p‐arsanilic acid) with copper(II) sulfate, i.e. hexaaquacopper(II) bis(4‐arsonoanilinium) disulfate dihydrate, (C6H9AsNO3)2[Cu(H2O)6](SO4)2·2H2O, (II), with copper(II) chloride, i.e. poly[bis(4‐arsonoanilinium) [tetra‐μ‐chlorido‐cuprate(II)]], {(C6H9AsNO3)2[CuCl4]}n , (III), and with cadmium chloride, i.e. poly[bis(4‐arsonoanilinium) [tetra‐μ‐chlorido‐cadmate(II)]], {(C6H9AsNO3)2[CdCl4]}n , (IV), have been determined. In (II), the two 4‐arsonoanilinium cations are accompanied by [Cu(H2O)6]2+ cations with sulfate anions. In the isotypic complex salts (III) and (IV), they act as counter‐cations to the {[CuCl4]2−}n or {[CdCl4]2−}n anionic polymer sheets, respectively. In (II), the [Cu(H2O)6]2+ ion sits on a crystallographic centre of symmetry and displays a slightly distorted octahedral coordination geometry. The asymmetric unit for (II) contains, in addition to half the [Cu(H2O)6]2+ ion, one 4‐arsonoanilinium cation, a sulfate dianion and a solvent water molecule. Extensive O—H…O and N—H…O hydrogen bonds link all the species, giving an overall three‐dimensional structure. In (III), four of the chloride ligands are related by inversion [Cu—Cl = 2.2826 (8) and 2.2990 (9) Å], with the other two sites of the tetragonally distorted octahedral CuCl6 unit occupied by symmetry‐generated Cl‐atom donors [Cu—Cl = 2.9833 (9) Å], forming a two‐dimensional coordination polymer network substructure lying parallel to (001). In the crystal, the polymer layers are linked across [001] by a number of bridging hydrogen bonds involving N—H…Cl interactions from head‐to‐head‐linked As—O—H…O 4‐arsonoanilinium cations. A three‐dimensional network structure is formed. CdII compound (IV) is isotypic with CuII complex (III), but with the central CdCl6 complex repeat unit having a more regular M —Cl bond‐length range [2.5232 (12)–2.6931 (10) Å] compared to that in (III). This series of compounds represents the first reported crystal structures having the protonated 4‐arsonoanilinium species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号