首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compounds, namely (2Z)‐1‐(4‐bromophenyl)‐2‐(pyrrolidin‐2‐ylidene)ethanone, C12H12BrNO, (I), (2Z)‐1‐(4‐bromophenyl)‐2‐(piperidin‐2‐ylidene)ethanone, C13H14BrNO, (II), and (2Z)‐2‐(azepan‐2‐ylidene)‐1‐(4‐bromophenyl)ethanone, C14H16BrNO, (III), are characterized by bifurcated intra‐ and intermolecular hydrogen bonding between the secondary amine and carbonyl groups. The former establishes a six‐membered hydrogen‐bonded ring, while the latter leads to the formation of centrosymmetric dimers. Weak C—H...Br interactions link the individual molecules into chains that run along the [011], [101] and [101] directions in (I)–(III), respectively. Additional weak Br...O, C—H...π and C—H...O interactions further stabilize the crystal structures.  相似文献   

2.
In the title compounds, 2‐methoxyethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O4, (II), isopropyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C21H20N2O3, (III), and ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(1‐naphthyl)‐4H‐pyran‐3‐carboxylate, C20H18N2O3, (IV), the heterocyclic pyran ring adopts a flattened boat conformation. In (II) and (III), the carbonyl group and a double bond of the heterocyclic ring are mutually anti, but in (IV) they are mutually syn. The ester O atoms in (II) and (III) and the carbonyl O atom in (IV) participate in intramolecular C—H...O contacts to form six‐membered rings. The dihedral angles between the naphthalene substituent and the closest four atoms of the heterocyclic ring are 73.3 (1), 71.0 (1) and 74.3 (1)° for (II)–(IV), respectively. In all three structures, only one H atom of the NH2 group takes part in N—H...O [in (II) and (III)] or N—H...N [in (IV)] intermolecular hydrogen bonds, and chains [in (II) and (III)] or dimers [in (IV)] are formed. In (II), weak intermolecular C—H...O and C—H...N hydrogen bonds, and in (III) intermolecular C—H...O hydrogen bonds link the chains into ladders along the a axis.  相似文献   

3.
The structures of N‐(2‐chlorophenyl)‐4‐hydroxy‐2‐methyl‐2H‐1,2‐benzothiazine‐3‐carboxamide 1,1‐dioxide and N‐(4‐chlorophenyl)‐4‐hydroxy‐2‐methyl‐2H‐1,2‐benzothiazine‐3‐carboxamide 1,1‐dioxide, both C16H13ClN2O4S, are stabilized by extensive intramolecular hydrogen bonds. The 4‐chloro derivative forms dimeric pairs of molecules lying about inversion centres as a result of intermolecular N—H...O hydrogen bonds, forming 14‐membered rings representing an R22(14) motif; the 2‐chloro derivative is devoid of any such intermolecular hydrogen bonds. The heterocyclic thiazine rings in both structures adopt half‐chair conformations.  相似文献   

4.
The title compounds, C14H12N+·CH3O4S?, (I), and C15H14N+·CH3O4S?, (II), respectively, crystallize with the planar 10‐methylacridinium or 9,10‐di­methyl­acridinium cations arranged in layers, parallel to the twofold axis in (I) and perpendicular to the 21 axis in (II). Adjacent cations in both compounds are packed in a `head‐to‐tail' manner. The methyl sulfate anion only exhibits planar symmetry in (II). The cations and anions are linked through C—H?O interactions involving three O atoms of the anion, six acridine H atoms and the CH3 group on the N atom in (I), and the four O atoms of the anion, three acridine H atoms and the carbon‐bound CH3 group in (II). The methyl sulfate anions are oriented differently in the two compounds relative to the cations, being nearly perpendicular in (I) but parallel in (II). Electrostatic interaction between the ions and the network of C—H?O interactions leads to relatively compact crystal lattices in both structures.  相似文献   

5.
In the title compounds, [PtCl2(C3H10N2)], (I), [PdCl2(C3H10N2)], (II), and [Pt2Cl4(C10H26N4)], (III), each metal atom lies in a distorted cis‐square coordination geometry. Compounds (I) and (II) are isostructural, and each complex has a mirror plane through the metal atom and the middle C atom of the propane‐1,3‐diamine ligand. In (III), the binuclear complex [Pt2Cl4(spn)] has an inversion center at the middle of the 4,9‐diaza­dodecane‐1,12‐diamine (spermine, spn) ligand. The six‐membered chelate rings in (III) adopt a chair form, which is unsymmetrical and less flattened than those in (I) and (II). In all three crystal structures, there are inter­molecular N—H⋯Cl hydrogen bonds.  相似文献   

6.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

7.
A new nano‐sized rigid double‐armed oxadiazole‐bridged organic ligand, 2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl)ethenyl]phenyl}‐1,3,4‐oxadiazole, C30H20N4O, L or (I), which adopts a cis conformation in the solid state, has been synthesized and used to create the two novel metallocycle complexes (2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl‐κN)ethenyl]phenyl}‐1,3,4‐oxadiazole)diiodidocadmium(II) dichloromethane monosolvate, [CdI2(C30H20N4O)]·CH2Cl2, (II), and di‐μ‐iodido‐bis[(2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl‐κN)ethenyl]phenyl}‐1,3,4‐oxadiazole)copper(I)], [Cu2I2(C30H20N4O)2], (III). Molecules of complex (II) adopts a 20‐membered `0'‐shaped metallocycle structure with crystallographic mirror symmetry. The discrete units are linked into one‐dimensional chains through intermolecular π–π and C—H...π interactions. In (III), the two I atoms and two CuI atoms form a {Cu2(μ‐I)2} cluster. One {Cu2(μ‐I)2} cluster and two L ligands form two 20‐membered monometallic rings in a head‐to‐head fashion, leading to a discrete centrosymmetric `8'‐shaped metallocyclic complex. These metallocycles stack together via two kinds of intermolecular π–π interactions to generate a two‐dimensional network in the ac plane. The luminescence properties of (I)–(III) were investigated in the solid state at room temperature and displayed an obvious red shift.  相似文献   

8.
The molecules of both methyl 4‐[2‐(4‐chlorobenzoyl)hydrazinyl]‐3‐nitrobenzoate, C15H12ClN3O5, (I), and methyl 4‐[2‐(2‐fluorobenzoyl)hydrazinyl]‐3‐nitrobenzoate, C15H12FN3O5, (II), contain an intramolecular N—H...O hydrogen bond, and both show electronic polarization in the nitrated aryl ring. In both compounds, molecules are linked by a combination of N—H...O and C—H...O hydrogen bonds to form sheets, which are built from R43(18) rings in (I) and from R44(28) rings in (II). In each of methyl 3‐phenyl‐1,2,4‐benzotriazine‐6‐carboxylate, C15H11N3O2, (III), and methyl 3‐(4‐methylphenyl)‐1,2,4‐benzotriazine‐6‐carboxylate, C16H13N3O2, (IV), the benzotriazine unit shows naphthalene‐type delocalization. There are no hydrogen bonds in the structures of compounds (III) and (IV), but in both compounds, the molecules are linked into chains by π–π stacking interactions involving the benzotriazine units. The mechanism of chain formation is the same in both (III) and (IV), and the different orientations of the two chains can be related to the approximate relationship between the unit‐cell metrics for (III) and (IV).  相似文献   

9.
The structures of cocrystals of 2,6‐dichlorophenol with 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, C6H4Cl2O·C4H7N5, (III), and 2,6‐dichloroaniline with 2,6‐diaminopyrimidin‐4(3H)‐one and N,N‐dimethylacetamide, C6H5Cl2N·C4H6N4O·C4H9NO, (V), plus three new pseudopolymorphs of their coformers, namely 2,4‐diamino‐6‐methyl‐1,3,5‐triazine–N,N‐dimethylacetamide (1/1), C4H7N5·C4H9NO, (I), 2,4‐diamino‐6‐methyl‐1,3,5‐triazine–N‐methylpyrrolidin‐2‐one (1/1), C4H7N5·C5H9NO, (II), and 6‐aminoisocytosine–N‐methylpyrrolidin‐2‐one (1/1), C4H6N4O·C5H9NO, (IV), are reported. Both 2,6‐dichlorophenol and 2,6‐dichloroaniline are capable of forming definite synthon motifs, which usually lead to either two‐ or three‐dimensional crystal‐packing arrangements. Thus, the two isomorphous pseudopolymorphs of 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, i.e. (I) and (II), form a three‐dimensional network, while the N‐methylpyrrolidin‐2‐one solvate of 6‐aminoisocytosine, i.e. (IV), displays two‐dimensional layers. On the basis of these results, attempts to cocrystallize 2,6‐dichlorophenol with 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, (III), and 2,6‐dichloroaniline with 6‐aminoisocytosine, (V), yielded two‐dimensional networks, whereby in cocrystal (III) the overall structure is a consequence of the interaction between the two compounds. By comparison, cocrystal–solvate (V) is mainly built by 6‐aminoisocytosine forming layers, with 2,6‐dichloroaniline and the solvent molecules arranged between the layers.  相似文献   

10.
The two title mononuclear compounds are four‐coordinate bis[N‐(5‐oxo‐4,4‐diphenyl‐4,5‐dihydro‐1H‐imidazolidin‐2‐ylidene)glycinato]copper(II) dimethylformamide disolvate, [Cu(C17H14N3O3)2]·2C3H7NO, (I), and five‐coordinate aquabis[N‐(5‐oxo‐4,4‐diphenyl‐4,5‐dihydro‐1H‐imidazolidin‐2‐ylidene)glycinato]copper(II) dimethylformamide disolvate, [Cu(C17H14N3O3)2(H2O)]·2C3H7NO, (II). In (I), the CuII ion lies on an inversion centre with one‐half of the complex molecule in the asymmetric unit, while in (II) there are two independent ligand molecules in the asymmetric unit, with the CuII ion and coordinated water molecule located on a general position. In both crystal structures, the complex molecules assemble in ribbons via N—H...O hydrogen‐bond networks.  相似文献   

11.
In both title compounds, i.e. 3‐methyl‐1,5‐di­phenyl‐1,6,7,8‐tetra­hydro­pyrazolo­[3,4‐b][1,4]­diazepine, C19H18N4, (I), and 5‐(4‐chloro­phenyl)‐3‐methyl‐1‐phenyl‐1,6,7,8‐tetra­hydro­pyra­zolo­[3,4‐b][1,4]­diazepine, C19H17ClN4, (II), an N—H?N hydrogen bond links six mol­ecules to form an R(30) ring. Compound (I) crystallizes in the R space group and (II) crystallizes in P with three mol­ecules in the asymmetric unit. The mol­ecule of (I) contains a disordered seven‐membered ring.  相似文献   

12.
The aromatic ring of the cinnamic moiety in N‐benzyl‐2′‐iodo­cinnamanilide, C22H18INO, (I), and N‐benzyl‐2′‐iodo‐4′‐methyl‐2‐phenyl­cinnamanilide, C29H24INO, (II), makes a dihedral angle with the iodo­phenyl ring of 72.1 (2) and 81.0 (2)° in (I) and (II), respectively. In (I), mol­ecules exist as discrete components, while in (II), they form infinite chains along the b axis, through I?O non‐bonded interactions.  相似文献   

13.
10‐(4‐Fluoro­phenyl)‐3,3,6,6,9‐penta­methyl‐3,4,6,7,9,10‐hexa­hydro­acridine‐1,8(2H,5H)‐dione, C24H28FNO2, (I), crystallizes with two crystallographically independent mol­ecules (which differ slightly in conformation), while 10‐(4‐fluoro­phenyl)‐9‐propyl‐3,3,6,6‐tetra­methyl‐3,4,6,7,9,10‐hexa­hydro­acridine‐1,8(2H,5H)‐dione, C26H32FNO2, (II), crystallizes with one mol­ecule per asymmetric unit. In both structures, the central ring in the acridine moiety is in a sofa conformation, while the outer rings adopt intermediate half‐chair/sofa conformations. The central pyridine ring is orthogonal to the substituted phenyl ring. In both structures, the packing of the crystal is stabilized by C—H?O intermolecular hydrogen bonds.  相似文献   

14.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

15.
Two isoindolin‐1‐one derivatives, (Z)‐3‐benzyl­idene‐N‐phenyl­isoindolin‐1‐one, C21H15NO, (II), and (Z)‐3‐benzyl­idene‐N‐(4‐methoxy­phenyl)­isoindolin‐1‐one, C22H17NO2, (III), were synthesized by the palladium‐catalysed heteroannulation. The mol­ecules of both compounds have a Z configuration. The interplanar angles between the five‐ and six‐membered rings of the isoindolinone moiety in (II) and (III) are 1.66 (11) and 2.26 (7)°, respectively. The phenyl rings at the N‐position in (II) and (III) are twisted out of the C4N ring plane by 62.77 (11) and 67.10 (7)°, respectively. The substitutions at the N and C‐3 positions of the isoindolinone system have little influence on the molecular dimensions of the resulting compounds.  相似文献   

16.
The molecules of methyl 3‐(2‐nitrophenylhydrazono)butanoate, C11H13N3O4, (I), and methyl 3‐(2,4‐dinitrophenylhydrazono)butanoate, C11H12N4O6, (II), both prepared from methyl 3‐oxobutanoate and the corresponding nitrophenylhydrazine, exhibit polarized molecular electronic structures; in each of (I) and (II), the molecules are linked into chains by a single C—H...O hydrogen bond. The molecules of 5‐hydroxy‐3‐methyl‐1‐phenyl‐1H‐pyrazole, C10H10N2O, (III), prepared by the reaction of methyl 3‐oxobutanoate and phenylhydrazine, are linked into chains by a single O—H...N hydrogen bond. The reaction between methyl 3‐oxobutanoate and 3‐nitrophenylhydrazine yields 5‐hydroxy‐3‐methyl‐1‐(3‐nitrophenyl)‐1H‐pyrazole, (IV), which when crystallized from acetone yields 4‐isopropylidene‐3‐methyl‐1‐(3‐nitrophenyl)‐1H‐pyrazol‐5(4H)‐one, C13H13N3O3, (V).  相似文献   

17.
A detailed structural analysis has been performed for N,N′‐bis(4‐chlorophenyl)‐7,8,11,12‐tetraoxaspiro[5.6]dodecane‐9,10‐diamine, C20H22Cl2N2O4, (I), N,N′‐bis(2‐fluorophenyl)‐7,8,11,12‐tetraoxaspiro[5.6]dodecane‐9,10‐diamine, C20H22F2N2O4, (II), and N,N′‐bis(4‐fluorophenyl)‐7,8,11,12‐tetraoxaspiro[5.6]dodecane‐9,10‐diamine, C20H22F2N2O4, (III). The seven‐membered ring with two peroxide groups adopts a twist‐chair conformation in all three compounds. The lengths of the C—N and O—O bonds are slightly shorter than the average statistical values found in the literature for azepanes and 1,2,4,5‐tetraoxepanes. The geometry analysis of compounds (I)–(III), the topological analysis of the electron density at the (3, ?1) bond critical points within Bader's quantum theory of `Atoms in molecules' (QTAIM) and NBO (natural bond orbital) analysis at the B3LYP/6‐31G(d,2p) level of theory showed that there are nO→σ*(C—O), nN→σ*(C—O) and nO→σ*(C—N) stereoelectronic effects. The molecules of compounds (I) and (III) are packed in the crystals as zigzag chains due to strong N—H…O and C—H…O hydrogen‐bond interactions, whereas the molecules of compound (II) form chains in the crystals bound by N—H…O, C—H…π and C—H…O contacts. All these data show that halogen atoms and their positions have a minimal effect on the geometric parameters, stereoelectronic effects and crystal packing of compounds (I)–(III), so that the twist‐chair conformation of the tetraoxepane ring remains unchanged.  相似文献   

18.
The first two crystal structures of en­amines derived from 1‐n‐alkyl‐3‐methyl‐5‐pyrazolones, namely 1‐(n‐hexyl)‐3‐methyl‐4‐[1‐(phenyl­amino)­propyl­idene]‐2‐pyrazolin‐5‐one, C19H27N3O, (I), and N,N′‐bis{1‐[1‐(n‐hexyl)‐3‐methyl‐5‐oxo‐2‐pyrazolin‐4‐yl­idene]­ethyl}hexane‐1,6‐di­amine, C30H52N6O2, (II), are reported. The mol­ecule of (II) lies about an inversion centre. Both (I) and (II) are stabilized by intramolecular N—H⋯O hydrogen bonding. This confirms previous results based on spectroscopic evidence alone.  相似文献   

19.
Radical salts and charge‐transfer complexes (CTCs) containing tetracyanoquinodimethane (TCNQ) display electrical conductivity, which has led to the development of many TCNQ derivatives with enhanced electron‐accepting properties that are applicable toward organic electronics. To expand the family of TCNQ derivatives, we report the synthesis and structures of 11,11,12,12‐tetracyano‐2,6‐diiodo‐9,10‐anthraquinodimethane (abbreviated as DITCAQ), C20H6I2N4, and its charge‐transfer complexes with various electron donors, namely DITCAQ–anthracene (2/1), C20H6I2N4·0.5C14H10, (I), DITCAQ–pyrene (2/1), C20H6I2N4·0.5C16H10, (II), and DITCAQ–tetrathiafulvalene (2/1), C20H6I2N4·0.5C6H4S4, (III). The molecular structure of DITCAQ consists of a 2,6‐diiodo‐9,10‐dihydroanthracene moiety with two malononitrile substituents. DITCAQ possesses a saddle shape, since the malononitrile groups bend significantly up out of the plane of the central ring and the two benzene rings bend down out of the same plane. π–π interactions between DITCAQ and the electron‐donor molecules control the degree of charge transfer in cocrystals (I), (II), and (III), which is reflected in both the dihedral angles between the terminal benzene ring and the central ring on the DITCAQ motifs, and their corresponding IR spectra.  相似文献   

20.
In each of ethyl N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinate, C16H19N5O3, (I), N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}glycinamide, C14H16N6O2, (II), and ethyl 3‐amino‐N‐{2‐amino‐5‐formyl‐6‐[methyl(phenyl)amino]pyrimidin‐4‐yl}propionate, C17H21N5O3, (III), the pyrimidine ring is effectively planar, but in each of methyl N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}glycinate, C16H19N5O3, (IV), ethyl 3‐amino‐N‐{2‐amino‐6‐[benzyl(methyl)amino]‐5‐formylpyrimidin‐4‐yl}propionate, C18H23N5O3, (V), and ethyl 3‐amino‐N‐[2‐amino‐5‐formyl‐6‐(piperidin‐4‐yl)pyrimidin‐4‐yl]propionate, C15H23N5O3, (VI), the pyrimidine ring is folded into a boat conformation. The bond lengths in each of (I)–(VI) provide evidence for significant polarization of the electronic structure. The molecules of (I) are linked by paired N—H...N hydrogen bonds to form isolated dimeric aggregates, and those of (III) are linked by a combination of N—H...N and N—H...O hydrogen bonds into a chain of edge‐fused rings. In the structure of (IV), molecules are linked into sheets by means of two hydrogen bonds, both of N—H...O type, in the structure of (V) by three hydrogen bonds, two of N—H...N type and one of C—H...O type, and in the structure of (VI) by four hydrogen bonds, all of N—H...O type. Molecules of (II) are linked into a three‐dimensional framework structure by a combination of three N—H...O hydrogen bonds and one C—H...O hydrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号