首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network.  相似文献   

2.
The coordination mode of the dimethylmalonate ligand in the two title CuII complexes, {[Cu(C5H3O4)(H2O)]·H2O}n, (I), and [Cu(C5H3O4)(H2O)]n, (II), is the same, with chelated six‐membered, bis‐monodentate and bridging bonding modes. However, the coordination environment of the CuII atoms, the connectivity of their metal–organic frameworks and their hydrogen‐bonding interactions are different. Complex (I) has a perfect square‐pyramidal CuII environment with the aqua ligand in the apical position, and only one type of square grid consisting of CuII atoms linked via carboxylate bridges to three dimethylmalonate ligands, with weak hydrogen‐bond interactions within and between its two‐dimensional layers. Complex (II) has a coordination geometry that is closer to square pyramidal than trigonal bipyramidal for its CuII atoms with the aqua ligand now in the basal plane. Its two‐dimensional layer structure comprises two alternating grids, which involve two and four different dimethylmalonate anions, respectively. There are strong hydrogen bonds only within its layers.  相似文献   

3.
The one‐dimensional coordination polymer catena‐poly[diaqua(sulfato‐κO)copper(II)]‐μ2‐glycine‐κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two‐dimensional coordination polymer poly[(μ2‐glycine‐κ2O:O′)(μ4‐sulfato‐κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuII cation has a pentacoordinate square‐pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuII cation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuII cations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one‐dimensional polymers, extending along [001], are linked via N—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three‐dimensional framework. In the crystal structure of (II), the two‐dimensional networks are linked via bifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three‐dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three‐dimensional frameworks.  相似文献   

4.
5‐[(Imidazol‐1‐yl)methyl]benzene‐1,3‐dicarboxylic acid (H2L) was synthesized and the dimethylformamide‐ and dimethylacetamide‐solvated structures of its adducts with CuII, namely catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylformamide disolvate], {[Cu(C12H9N2O4)2]·2C3H7NO}n, (I), and catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylacetamide disolvate], {[Cu(C12H9N2O4)2]·2C4H9NO}n, (II), the formation of which are associated with mono‐deprotonation of H2L. The two structures are isomorphous and isometric. They consist of one‐dimensional coordination polymers of the organic ligand with CuII in a 2:1 ratio, [Cu(μ‐HL)2]n, crystallizing as the dimethylformamide (DMF) or dimethylacetamide (DMA) disolvates. The CuII cations are characterized by a coordination number of six, being located on centres of crystallographic inversion. In the polymeric chains, each CuII cation is linked to four neighbouring HL ligands, and the organic ligand is coordinated via Cu—O and Cu—N bonds to two CuII cations. In the corresponding crystal structures of (I) and (II), the coordination chains, aligned parallel to the c axis, are further interlinked by strong hydrogen bonds between the noncoordinated carboxy groups in one array and the coordinated carboxylate groups of neighbouring chains. Molecules of DMF and DMA (disordered) are accommodated at the interface between adjacent polymeric assemblies. This report provides the first structural evidence for the formation of coordination polymers with H2Lvia multiple metal–ligand bonds through both carboxylate and imidazole groups.  相似文献   

5.
The novel title coordination polymer, {[Cu(C8H4O4)(C10H9N3)]·H2O}n, synthesized by the slow‐diffusion method, takes the form of one‐dimensional zigzag chains built up of CuII cations linked by benzene‐1,3‐dicarboxylate (ipht) anions. An exceptional characteristic of this structure is that it belongs to a small group of metal–organic polymers where ipht is coordinated as a bridging tridentate ligand with monodentate and chelate coordination of individual carboxylate groups. The CuII cation has a highly distorted square‐pyramidal geometry formed by three O atoms from two ipht anions and two N atoms from a di‐2‐pyridylamine (dipya) ligand. The zigzag chains, which run along the b axis, further construct a three‐dimensional metal–organic framework via strong face‐to‐face π–π interactions and hydrogen bonds. A solvent water molecule is linked to the different carboxylate groups via hydrogen bonds. Thermogravimetric and differential scanning calorimetric analyses confirm the strong hydrogen bonding.  相似文献   

6.
In the mol­ecules of 5‐amino‐1‐phenyl­tetrazole, C7H7N5, (I), and 5‐amino‐1‐(1‐naphthyl)­tetrazole, C11H9N5, (II), the tetrazole rings and aryl fragments are not coplanar; corresponding dihedral angles are 50.58 (5) and 45.19 (7)° for the two independent mol­ecules of (I), and 64.14 (5)° for (II). Intermolecular N—H⋯N hydrogen bonds between the amino groups and tetrazole N atoms are primarily responsible for formation of two‐dimensional networks extending parallel to the bc plane in both compounds. The presence of the amino group has a distinct effect on the geometry of the tetrazole rings in each case.  相似文献   

7.
In the title compound, [Cu(C10H4O8)(C12H8N2)]n, the CuII cation has a four‐coordination environment completed by two N atoms from one 1,10‐phenanthroline (phen) ligand and two O atoms belonging to two di­hydrogen benzene‐1,2,4,5‐­tetra­carboxyl­ate anions (H2TCB2−). There is a twofold axis passing through the CuII cation and the centre of the phen ligand. The [Cu(phen)]2+ moieties are bridged by H2TCB2− anions to form an infinite one‐dimensional coordination polymer with a zigzag chain structure along the c axis. A double‐chain structure is formed by hydrogen bonds between adjacent zigzag chains. Furthermore, there are π–π stacking inter­actions between the phen ligands, with an average distance of 3.64 Å, resulting in a two‐dimensional network structure.  相似文献   

8.
The CoII atom in bis(5‐aminotetrazole‐1‐acetato)tetraaquacobalt(II), [Co(C3H4N5O2)2(H2O)4], (I), is octahedrally coordinated by six O atoms from two 5‐aminotetrazole‐1‐acetate (atza) ligands and four water molecules. The molecule has a crystallographic centre of symmetry located at the CoII atom. The molecules of (I) are interlinked by hydrogen‐bond interactions, forming a two‐dimensional supramolecular network structure in the ac plane. The CdII atom in catena‐poly[[cadmium(II)]‐bis(μ‐5‐aminotetrazole‐1‐acetato], [Cd(C3H4N5O2)2]n, (II), lies on a twofold axis and is coordinated by two N atoms and four O atoms from four atza ligands to form a distorted octahedral coordination environment. The CdII centres are connected through tridentate atza bridging ligands to form a two‐dimensional layered structure extending along the ab plane, which is further linked into a three‐dimensional structure through hydrogen‐bond interactions.  相似文献   

9.
In the two title copper(II) complexes, [CuL(C5H7O2)]n, (I), and [CuL′(C5H7O2)], (II), respectively, where HL is 4‐hydroxy‐3‐methoxybenzaldehyde picoloylhydrazone, C14H12N3O3, and HL′ is 4‐methoxybenzaldehyde picoloylhydrazone, C14H12N3O2, the CuII ions display a highly Jahn–Teller‐distorted octahedral and a square‐planar coordination geometry, respectively. In complex (I), two neighbouring CuII atoms are bridged by L and acetylacetonate, alternately, giving rise to a one‐dimensional chain of CuN2O4 octahedra interconnected by these two ligands along the a axis. In addition, the hydroxy H atom of the vanillin group connects to the carboxyl O atom of the adjacent chain via an O—H...O hydrogen bond, giving rise to a three‐dimensional supramolecular assembly. Complex (II) displays a discrete structure.  相似文献   

10.
The title compound, [CuNa(C4H3O7S)(C10H8N2)(H2O)3]n, consists of one CuII cation, one NaI cation, one 2‐sulfonatobutanedioate trianion (SSC3−), one 2,2′‐bipyridyl (bpy) ligand and three coordinated water molecules as the building unit. The coordination of the CuII cation is composed of two pyridyl N atoms, one water O atom and two carboxylate O atoms in a distorted square‐pyramidal coordination geometry with an axial elongation. The NaI cation is six‐coordinated by three water molecules and three carboxylate O atoms from three SSC3− ligands in a distorted octahedral geometry. Two SSC3− ligands link two CuII cations to form a Cu2(SSC)2(bpy)2 macrocyclic unit lying across an inversion centre, which is further linked by NaI cations via Na—O bonds to give a one‐dimensional chain. Interchain hydrogen bonds link these chains to form a two‐dimensional layer, which is further extended into a three‐dimensional supramolecular framework through π–π stacking interactions. The thermal stability of the title compound has also been investigated.  相似文献   

11.
The title compounds, trans‐bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)bis(ethanol‐κO)cadmium(II), [Cd(C8H5N2O2)2(C2H6O)2], (I), and trans‐bis(1H‐benzimidazole‐κN3)bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)nickel(II), [Ni(C8H5N2O2)2(C7H6N2)2], (II), are hydrogen‐bonded supramolecular complexes. In (I), the CdII ion is six‐coordinated by two O atoms from two ethanol molecules, and by two O and two N atoms from two bidentate benzimidazole‐2‐carboxylate (HBIC) ligands, giving a distorted octahedral geometry. The combination of O—H...O and N—H...O hydrogen bonds results in two‐dimensional layers parallel to the ab plane. In (II), the six‐coordinated NiII atom, which lies on an inversion centre, shows a similar distorted octahedral geometry to the CdII ion in (I); two benzimidazole molecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N—H...O hydrogen bonds between pairs of HBIC anions connect adjacent NiII coordination units to form a one‐dimensional chain parallel to the a axis. Moreover, these one‐dimensional chains are further linked via N—H...O hydrogen bonds between HBIC anions and benzimidazole molecules to generate a three‐dimensional supramolecular framework. The two compounds show quite different supramolecular networks, which may be explained by the fact that different co‐ligands occupy the axial sites in the coordination units.  相似文献   

12.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

13.
The title complex, [CuNi(C13H16N3O3)(C10H8N2)2(H2O)]ClO4, has a cis‐oxamide‐bridged heterobinuclear cation, with a Cu...Ni separation of 5.3297 (6) Å, counterbalanced by a disordered perchlorate anion. The CuII and NiII cations are located in square‐pyramidal and octahedral coordination environments, respectively. The complex molecules are assembled into a three‐dimensional supramolecular structure through hydrogen bonds and π–π stacking interactions. The influence of the two types of metal cation on the supramolecular structure is discussed.  相似文献   

14.
The title compound, {[Ni(C9H4O6)(C14H14N4)]·0.41H2O}n, exhibits a three‐dimensional hydrogen‐bonded supramolecular framework. The NiII cation is six‐coordinated in a distorted triangular prism defined by two N atoms from two 1,3‐bis(imidazol‐l‐ylmethyl)benzene (bix) ligands and four O atoms from two 5‐carboxybenzene‐1,3‐dicarboxylate (HBTC) dianions. The bix molecules and HBTC dianions both act as bidentate ligands, linking the NiII cations to form a one‐dimensional coordination polymer. A two‐dimensional wave‐like net is constructed by O—H...O hydrogen bonds linking adjacent chains. Partially occupied solvent water molecules fill the cavities and link these layers to form a three‐dimensional supramolecular structure via O—H...O hydrogen bonds. The title compound was also characterized by powder X‐ray diffraction and thermogravimetric analysis.  相似文献   

15.
The title complex, [Cu4(C11H10N3O4)2(C6H6N4S2)2](C6H2N3O7)2, consists of a circular tetracopper(II) cation with an embedded inversion centre and two uncoordinated picrate (2,4,6‐trinitrophenolate) anions. The CuII cations at the inner sites of N‐(2‐aminoethyl)‐N′‐(2‐carboxylatophenyl)oxamidate(3−) (oxbe) have square‐planar environments and those at the outer sites are in square‐pyramidal geometries. The separations of pairs of CuII cations bridged by cis‐oxamide and carboxylate groups are 5.2217 (5) and 5.2871 (5) Å, respectively. The tetracopper(II) cations and picrate anions are connected by N—H...O hydrogen bonds into a two‐dimensional network parallel to the (010) plane, and these two‐dimensional networks are assembled by two types of π–π stacking interactions into a three‐dimensional supramolecular structure.  相似文献   

16.
Hydantoin‐5‐acetic acid [2‐(2,5‐dioxoimidazolidin‐4‐yl)acetic acid] and orotic acid (2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylic acid) each contain one rigid acceptor–donor–acceptor hydrogen‐bonding site and a flexible side chain, which can adopt different conformations. Since both compounds may be used as coformers for supramolecular complexes, they have been crystallized in order to examine their conformational preferences, giving solvent‐free hydantoin‐5‐acetic acid, C5H6N2O4, (I), and three crystals containing orotic acid, namely, orotic acid dimethyl sulfoxide monosolvate, C5H4N2O4·C2H6OS, (IIa), dimethylammonium orotate–orotic acid (1/1), C2H8N+·C5H3N2O4·C5H4N2O4, (IIb), and dimethylammonium orotate–orotic acid (3/1), 3C2H8N+·3C5H3N2O4·C5H4N2O4, (IIc). The crystal structure of (I) shows a three‐dimensional network, with the acid function located perpendicular to the ring. Interestingly, the hydroxy O atom acts as an acceptor, even though the carbonyl O atom is not involved in any hydrogen bonds. However, in (IIa), (IIb) and (IIc), the acid functions are only slightly twisted out of the ring planes. All H atoms of the acidic functions are directed away from the rings and, with respect to the carbonyl O atoms, they show an antiperiplanar conformation in (I) and synperiplanar conformations in (IIa), (IIb) and (IIc). Furthermore, in (IIa), (IIb) and (IIc), different conformations of the acid O=C—C—N torsion angle are observed, leading to different hydrogen‐bonding arrangements depending on their conformation and composition.  相似文献   

17.
The synthesis of coordination polymers or metal–organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one‐dimensional coordination polymer, catena‐poly[[[bis{1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κN3}zinc(II)]‐μ‐hexane‐1,6‐dicarboxylato‐κ4O1,O1′:O6,O6′] monohydrate], {[Zn(C6H8O4)(C9H8N6)2]·H2O}n, has been synthesized by the reaction of Zn(Ac)2 (Ac is acetate) with 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) and adipic acid (H2adi) at room temperature. In the polymer, each ZnII ion exhibits an irregular octahedral ZnN2O4 coordination geometry and is coordinated by two N atoms from two symmetry‐related bimt ligands and four O atoms from two symmetry‐related dianionic adipate ligands. ZnII ions are connected by adipate ligands into a one‐dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the ZnII ions in a monodentate mode on both sides of the main chain. In the crystal, the one‐dimensional chains are further connected through N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.  相似文献   

18.
In the title novel mixed‐valence copper complex, {[Cu2(C8H2NO6)(C10H8N2)]·H2O}n, the CuI and CuII ions are linked by 4,4′‐bipyridine (bpy) and pyridine‐2,4,6‐tricarboxyl­ate (ptc) ligands into corrugated layers, which are assembled via inter­layer C—H⋯O hydrogen bonds to give a three‐dimensional supra­molecular architecture.  相似文献   

19.
In the title complex, {[Cu(C8H8NO3S)2(H2O)]·2H2O}n, the CuII cation has a distorted square‐pyramidal coordination environment consisting of five O atoms, one from a water molecule, one from an N—O group and the other three from the carboxylate groups of two 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions. The aqua[3‐(2‐pyridylsulfanyl)propionato N‐oxide]copper(II) moieties are bridged by 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions to form an infinite three‐dimensional coordination polymer with a zigzag chain structure. The crystal structure is stabilized by hydrogen bonds.  相似文献   

20.
In the title compound, [Cd(C8H4O4)(C10H8N2O2)(H2O)]n, (I), each CdII atom is seven‐coordinated in a distorted monocapped trigonal prismatic coordination geometry, surrounded by four carboxylate O atoms from two different benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, two O atoms from two distinct 4,4′‐bipyridine N,N′‐dioxide (bpdo) ligands and one water O atom. The CdII atom and the water O atom are on a twofold rotation axis. The bpdo and 1,4‐bdc ligands are on centers of inversion. Each crystallographically unique CdII center is bridged by the 1,4‐bdc dianions and bpdo ligands to give a three‐dimensional diamond framework containing large adamantanoid cages. Three identical such nets are interlocked with each other, thus directly leading to the formation of a threefold interpenetrated three‐dimensional diamond architecture. To the best of our knowledge, (I) is the first example of a threefold interpenetrating diamond net based on both bpdo and carboxylate ligands. There are strong linear O—H...O hydrogen bonds between the water molecules and carboxylate O atoms within different diamond nets. Each diamond net is hydrogen bonded to its two neighbors through these hydrogen bonds, which further consolidates the threefold interpenetrating diamond framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号