首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The molecules of 3‐amino‐4‐anilino‐1H‐isochromen‐1‐one, C15H12N2O2, (I), and 3‐amino‐4‐[methyl(phenyl)amino]‐1H‐isochromen‐1‐one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three‐centre N—H...(O)2 hydrogen bond, one two‐centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.  相似文献   

2.
In methyl 4‐(4‐chloroanilino)‐3‐nitrobenzoate, C14H11ClN2O4, (I), there is an intramolecular N—H...O hydrogen bond and the intramolecular distances provide evidence for electronic polarization of the o‐quinonoid type. The molecules are linked into sheets built from N—H...O, C—H...O and C—H...π(arene) hydrogen bonds, together with an aromatic π–π stacking interaction. The molecules of methyl 1‐benzyl‐2‐(4‐chlorophenyl)‐1H‐benzimidazole‐5‐carboxylate, C22H17ClN2O2, (II), are also linked into sheets, this time by a combination of C—H...π(arene) hydrogen bonds and aromatic π–π stacking interactions.  相似文献   

3.
In the structures of the two title calix[4]arene derivatives, C32H28N12O4, (I), and C60H68Cl2N2O6, (II), compound (I) adopts an open‐cone conformation in which there are four intramolecular O—H...O hydrogen bonds, while compound (II) adopts a distorted chalice conformation where the two pendant pyridyl rings, one of which is disordered, are almost mutually perpendicular, with an interplanar angle of 79.2 (2) or 71.4 (2)°. The dihedral angles between the virtual plane defined by the four bridging methylene C atoms and the phenol rings are 120.27 (7), 124.03 (6), 120.14 (8) and 128.25 (7)° for (I), and 95.99 (8), 135.93 (7), 97.21 (8) and 126.10 (8)° for (II). In the supramolecular structure of (I), pairs of molecules associate by self‐inclusion, where one azide group of the molecule is inserted into the cavity of the inversion‐related molecule, and the association is stabilized by weak intermolecular C—H...N hydrogen bonds and π(N3)–π(aromatic) interactions. The molecular pairs are linked into a two‐dimensional network by a combination of weak intermolecular C—H...N contacts. Each network is further connected to its neighbor to produce a three‐dimensional framework via intersheet C—H...N hydrogen bonds. In the crystal packing of (II), the molecular components are linked into an infinite chain by intermolecular C—H...O hydrogen bonds. This study demonstrates the ability of calix[4]arene derivatives to form self‐inclusion structures.  相似文献   

4.
The structures of the title compounds, C9H8O3S, (I), and C13H11NO5S, (II), were determined by X‐ray powder diffraction. Both were solved using the direct‐space parallel tempering algorithm and refined using the Rietveld method. In (I), the C—S—C bond angle is slightly smaller than normal, indicating more p character in the bonding orbitals of the S atom. The carboxylic acid group joins across an inversion centre to form a dimer. The crystal packing includes a weak C—H...O hydrogen bond between an aromatic C—H group and a carboxylic acid O atom to form a two‐dimensional network parallel to (10). The C—S—C bond angle in (II) is larger than its counterpart in (I), indicating that the S atom of (II) has less p character in its bonding orbitals than that of (I), according to Bent's rule. The crystal structure of (II) includes weak C—H...O hydrogen bonds between the H atoms of the methylene groups and carbonyl O atoms, forming a three‐dimensional network.  相似文献   

5.
The title compound, C21H26FN3O7, is assembled by N—H...O and O—H...O hydrogen bonds into well‐separated two‐dimensional layers of about 15 Å thickness. The crescent conformation of the molecules is stabilized by weak intramolecular C—H...O and C—H...F hydrogen bonds. The uridine moiety adopts an anti conformation. The ribofuranose ring exists in an envelope conformation. All the endocyclic uracil bonds are shorter than normal single C—N and C—C bonds, and five of them have comparable lengths, which implies a considerable degree of delocalization of the electron density within this ring.  相似文献   

6.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

7.
The molecules of 5‐amino‐1‐(4‐methoxybenzoyl)‐3‐methylpyrazole, C12H13N3O2, (I), and 5‐amino‐3‐methyl‐1‐(2‐nitrobenzoyl)pyrazole, C11H10N4O3, (II), both contain intramolecular N—H...O hydrogen bonds. The molecules of (I) are linked into a chain of rings by a combination of N—H...N and N—H...π(arene) hydrogen bonds, while those of (II) are linked into a three‐dimensional framework structure by N—H...N and C—H...O hydrogen bonds.  相似文献   

8.
The title isomers, viz. the N‐(3‐methylphenyl)‐, (I), and N‐(2‐methylphenyl)‐, (II), derivatives, both C26H28N2O4S, adopt an E configuration that places the thiophene and trimethoxyphenyl groups on opposite sides of the C=N double bond, providing a suitable orientation for formation of an intramolecular N—H...N hydrogen bond. However, while the molecule in (I) is close to being planar, the N‐methylphenyl group in (II) is twisted significantly from the plane of the remainder of the molecule. Both crystal structures are essentially layered and there are no intermolecular N—H...O hydrogen bonds. Compound (I) has a significantly higher calculated density than (II) (1.340 cf 1.305 Mg m−3), indicating that the molecular packing in the meta isomer is overall more efficient than that in the ortho isomer.  相似文献   

9.
The three title isomers, 4‐, (I), 3‐, (II), and 2‐fluoro‐N′‐(4‐pyridyl)benzamide, (III), all C12H9FN2O, crystallize in the P21/c space group (No. 14) with similar unit‐cell parameters and are isomorphous and isostructural at the primary hydrogen‐bonding level. An intramolecular C—H...O=C interaction is present in all three isomers [C...O = 2.8681 (17)–2.884 (2) Å and C—H...O117–118°], with an additional N—H...F [N...F = 2.7544 (15) Å] interaction in (III). Intermolecular amide–pyridine N—H...N hydrogen bonds link molecules into one‐dimensional zigzag chains [graph set C(6)] along the [010] direction as the primary hydrogen bond [N...N = 3.022 (2), 3.049 (2) and 3.0213 (17) Å]. These are augmented in (I) by C—H...π(arene) and cyclic C—F...π(arene) contacts about inversion centres, in (II) by C—F...F—C interactions [C...F = 3.037 (2) Å] and weaker C—H...π(arene)/C—H...F contacts, and in (III) by C—H...π(arene) and C=O...O=C interactions, linking the alternating chains into two‐dimensional sheets. Typical amide N—H...O=C hydrogen bonds [as C(4) chains] are not present [N...O = 3.438 (2) Å in (I), 3.562 (2) Å in (II) and 3.7854 (16) Å in (III)]; the C=O group is effectively shielded and only participates in weaker interactions/contacts. This series is unusual as the three isomers are isomorphous (having similar unit‐cell parameters, packing and alignment), but they differ in their interactions and contacts at the secondary level.  相似文献   

10.
In the title compound, C21H18N2OS2, a strong intramolecular N—H...O hydrogen bond [N...O = 2.642 (3) Å] between the amide N atom and the benzoyl O atom forms an almost planar six‐membered ring in the central part of the molecule. In the crystal, molecules are packed through weak N—H...S interactions. Intra‐ and intermolecular hydrogen bonds and van der Waals interactions are the stabilizing forces for the crystal structure.  相似文献   

11.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

12.
The crystal structures of the title 4‐chlorophenyl, (I), and 2‐chlorophenyl, (II), compounds, both C14H12ClNO2, have been determined using X‐ray diffraction techniques and the molecular structures have also been optimized at the B3LYP/6‐31 G(d,p) level using density functional theory (DFT). The X‐ray study shows that the title compounds both have strong intramolecular O—H...N hydrogen bonds and that the crystal networks are primarily determined by weak C—H...π and van der Waals interactions. The strong intramolecular O—H...N hydrogen bond is evidence of the preference for the phenol–imine tautomeric form in the solid state. The IR spectra of the compounds were recorded experimentally and also calculated for comparison. The results from both the experiment and theoretical calculations are compared in this study.  相似文献   

13.
The intramolecular dimensions of the title compound, C14H12N2O, provide evidence for a polarized electronic structure. The molecule, which is almost completely planar, contains an intramolecular N—H...O hydrogen bond, and the molecules are linked by a combination of N—H...N, C—H...O and C—H...π(arene) hydrogen bonds to form a three‐dimensional framework structure.  相似文献   

14.
The title compound, C17H13NO4, crystallizes in two polymorphic forms, each with two molecules in the asymmetric unit and in the monoclinic space group P21/c. All of the molecules have intramolecular hydrogen bonds involving the amide group. The amide N atoms act as donors to the carbonyl group of the pyrone and also to the methoxy group of the benzene ring. The carbonyl O atom of the amide group acts as an acceptor of the β and β′ C atoms belonging to the aromatic rings. These intramolecular hydrogen bonds have a profound effect on the molecular conformation. In one polymorph, the molecules in the asymmetric unit are linked to form dimers by weak C—H...O interactions. In the other, the molecules in the asymmetric unit are linked by a single weak C—H...O hydrogen bond. Two of these units are linked to form centrosymmetric tetramers by a second weak C—H...O interaction. Further interactions of this type link the molecules into chains, so forming a three‐dimensional network. These interactions in both polymorphs are supplemented by π–π interactions between the chromone rings and between the chromone and methoxyphenyl rings.  相似文献   

15.
Diethyl 2‐[(2‐hydroxyanilino)methylidene]malonate, (I), and diethyl 2‐[(4‐hydroxyanilino)methylidene]malonate, (II), both C14H17NO5, crystallize in centrosymmetric orthorhombic and monoclinic crystal systems, respectively. Compound (I) resides on a crystallographic mirror plane and displays bifurcated intramolecular hydrogen bonding, as well as intermolecular hydrogen bonding due to the position of the hydroxy group. Compound (II) has a single intramolecular N—H...O hydrogen bond. Infinite one‐dimensional head‐to‐tail chains formed by O—H...O hydrogen bonding are present in both structures. The molecular packing is mainly influenced by the intermolecular O—H...O interactions. Additionally, C—H...O interactions crosslinking the chains are found in (II).  相似文献   

16.
Isomeric 5‐bromo‐3‐nitrosalicylaldehyde phenylhydrazone and 3‐bromo‐5‐nitrosalicylaldehyde phenylhydrazone, C13H10BrN3O3, both crystallize with two molecules in the asymmetric unit. In both isomers, an intramolecular O—H...N hydrogen bond links the hydroxy group and the imine N atom. In the 5‐bromo‐3‐nitro isomer, there are two independent N—H...O hydrogen‐bonded chains, each molecule in the asymmetric unit forming its own chain. These chains are then linked to form a three‐dimensional framework by a combination of weak C—H...O, C—H...Br, C—H...π and π–π stacking interactions. In the 3‐bromo‐5‐nitro isomer, N—H...O hydrogen bonds link the independent molecules alternately into a zigzag chain, which is reinforced by a weak C—H...O interaction. Individual chains are linked by a C—H...Br interaction and a three‐dimensional framework is generated by π–π stacking interactions.  相似文献   

17.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

18.
The basic building unit in the structure of the title compound, C14H14FNO3, is pairs of molecules arranged in an antiparallel fashion, enabling weak C—H...O interactions. Each molecule is additionally involved in π–π interactions with neighbouring molecules. The pairs of molecules formed by the C—H...O hydrogen bonds and π–π interactions form ribbon‐like chains running along the c axis. Theoretical calculations based on these pairs showed that, although the main intermolecular interaction is electrostatic, it is almost completely compensated by an exchange–repulsion contribution to the total energy. As a consequence, the dominating force is a dispersion interaction. The F atoms form weak C—F...H—C interactions with the H atoms of the neighbouring ethyl groups, with H...F separations in the range 2.59–2.80 Å.  相似文献   

19.
Two polymorphs of bis(2‐carbamoylguanidinium) fluorophosphonate dihydrate, 2C2H7N4O+·FO3P2−·2H2O, are presented. Polymorph (I), crystallizing in the space group Pnma, is slightly less densely packed than polymorph (II), which crystallizes in Pbca. In (I), the fluorophosphonate anion is situated on a crystallographic mirror plane and the O atom of the water molecule is disordered over two positions, in contrast with its H atoms. The hydrogen‐bond patterns in both polymorphs share similar features. There are O—H...O and N—H...O hydrogen bonds in both structures. The water molecules donate their H atoms to the O atoms of the fluorophosphonates exclusively. The water molecules and the fluorophosphonates participate in the formation of R44(10) graph‐set motifs. These motifs extend along the a axis in each structure. The water molecules are also acceptors of either one [in (I) and (II)] or two [in (II)] N—H...O hydrogen bonds. The water molecules are significant building elements in the formation of a three‐dimensional hydrogen‐bond network in both structures. Despite these similarities, there are substantial differences between the hydrogen‐bond networks of (I) and (II). The N—H...O and O—H...O hydrogen bonds in (I) are stronger and weaker, respectively, than those in (II). Moreover, in (I), the shortest N—H...O hydrogen bonds are shorter than the shortest O—H...O hydrogen bonds, which is an unusual feature. The properties of the hydrogen‐bond network in (II) can be related to an unusually long P—O bond length for an unhydrogenated fluorophosphonate anion that is present in this structure. In both structures, the N—H...F interactions are far weaker than the N—H...O hydrogen bonds. It follows from the structure analysis that (II) seems to be thermodynamically more stable than (I).  相似文献   

20.
In the molecule of (2,7‐dimethoxynaphthalen‐1‐yl)(3‐fluorophenyl)methanone, C19H15FO3, (I), the dihedral angle between the plane of the naphthalene ring system and that of the benzene ring is 85.90 (5)°. The molecules exhibit axial chirality, with either an R‐ or an S‐stereogenic axis. In the crystal structure, each enantiomer is stacked into a columnar structure and the columns are arranged alternately to form a stripe structure. A pair of (methoxy)C—H...F hydrogen bonds and π–π interactions between the benzene rings of the aroyl groups link an R‐ and an S‐isomer to form a dimeric pair. These dimeric pairs are piled up in a columnar fashion through (benzene)C—H...O=C and (benzene)C—H...OCH3 hydrogen bonds. The analogous 1‐benzoylated compound, namely (2,7‐dimethoxynaphthalen‐1‐yl)(phenyl)methanone [Kato et al. (2010). Acta Cryst. E 66 , o2659], (II), affords three independent molecules having slightly different dihedral angles between the benzene and naphthalene rings. The three independent molecules form separate columns and the three types of column are connected to each other via two C—H...OCH3 hydrogen bonds and one C—H...O=C hydrogen bond. Two of the three columns are formed by the same enantiomeric isomer, whereas the remaining column consists of the counterpart isomer. In the case of the fluorinated 1‐benzoylated naphthalene analogue, namely (2,7‐dimethoxynaphthalen‐1‐yl)(4‐fluorophenyl)methanone [Watanabe et al. (2011). Acta Cryst. E 67 , o1466], (III), the molecular packing is similar to that of (I), i.e. it consists of stripes of R‐ and S‐enantiomeric columns. A pair of C—H...F hydrogen bonds between R‐ and S‐isomers, and C—H...O=C hydrogen bonds between R(or S)‐isomers, are also observed. Consequently, the stripe structure is apparently induced by the formation of R...S dimeric pairs stacked in a columnar fashion. The pair of C—H...F hydrogen bonds effectively stabilizes the dimeric pair of R‐ and S‐enantiomers. In addition, the co‐existence of C—H...F and C—H...O=C hydrogen bonds makes possible the formation of a structure with just one independent molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号