首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, C17H13NO4, crystallizes in two polymorphic forms, each with two molecules in the asymmetric unit and in the monoclinic space group P21/c. All of the molecules have intramolecular hydrogen bonds involving the amide group. The amide N atoms act as donors to the carbonyl group of the pyrone and also to the methoxy group of the benzene ring. The carbonyl O atom of the amide group acts as an acceptor of the β and β′ C atoms belonging to the aromatic rings. These intramolecular hydrogen bonds have a profound effect on the molecular conformation. In one polymorph, the molecules in the asymmetric unit are linked to form dimers by weak C—H...O interactions. In the other, the molecules in the asymmetric unit are linked by a single weak C—H...O hydrogen bond. Two of these units are linked to form centrosymmetric tetramers by a second weak C—H...O interaction. Further interactions of this type link the molecules into chains, so forming a three‐dimensional network. These interactions in both polymorphs are supplemented by π–π interactions between the chromone rings and between the chromone and methoxyphenyl rings.  相似文献   

2.
The title compound, C24H24N2O3S, exhibits antifungal and antibacterial properties. The compound crystallizes with two molecules in the asymmetric unit, with one molecule exhibiting `orientational disorder' in the crystal structure with respect to the cyclohexene ring. The o‐toluidine groups in both molecules are noncoplanar with the respective cyclohexene‐fused thiophene ring. In both molecules, there is an intramolecular N—H...N hydrogen bond forming a pseudo‐six‐membered ring which locks the molecular conformation and eliminates conformational flexibility. The crystal structure is stabilized by O—H...O hydrogen bonds; both molecules in the asymmetric unit form independent chains, each such chain consisting of alternating `ordered' and `disordered' molecules in the crystal lattice.  相似文献   

3.
The structure of the title compound, C15H15NO4, comprises a racemic mixture of chiral molecules containing five stereogenic centres. The cyclohexane ring tends towards a boat conformation and the two tetrahydrofuran rings adopt envelope conformations. Molecules are linked into sheets parallel to (100) by a combination of O—H...O, C—H...O and C—H...π hydrogen bonds, leading to a two‐dimensional supramolecular structure.  相似文献   

4.
The title compound, C8H4Br3NO4, shows an extensive hydrogen‐bond network. In the crystal structure, molecules are linked into chains by COO—H...O bonds, and pairs of chains are connected by additional COO—H...O bonds. This chain bundle shows stacking interactions and weak N—H...O hydrogen bonds with adjacent chain bundles. The three Br atoms present in the molecule form an equilateral triangle. This can be easily identified in the heavy‐atom substructure when this compound is used as a heavy‐atom derivative for experimental phasing of macromolecules. The title compound crystallizes as a nonmerohedral twin.  相似文献   

5.
The molecules of 5‐amino‐1‐(4‐methoxybenzoyl)‐3‐methylpyrazole, C12H13N3O2, (I), and 5‐amino‐3‐methyl‐1‐(2‐nitrobenzoyl)pyrazole, C11H10N4O3, (II), both contain intramolecular N—H...O hydrogen bonds. The molecules of (I) are linked into a chain of rings by a combination of N—H...N and N—H...π(arene) hydrogen bonds, while those of (II) are linked into a three‐dimensional framework structure by N—H...N and C—H...O hydrogen bonds.  相似文献   

6.
The crystal structure of the title compound, C9H11NO·C9H9N5, contains one molecule of each component in the asymmetric unit. Approximately planar clusters of four molecules are formed by N—H...N and N—H...O hydrogen bonds, and further N—H...N hydrogen bonds link adjacent clusters to form pleated ribbons. π–π interactions are found between triazine and aldehyde benzene rings in different clusters, generating stacks along the monoclinic b axis. The intramolecular geometry of the two components is similar to that found in other crystal structures containing these molecules. Both molecules are approximately planar, except for methyl H atoms, with a small twist about the C—C bond linking the phenyl and triazine rings.  相似文献   

7.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

8.
The three title isomers, 4‐, (I), 3‐, (II), and 2‐fluoro‐N′‐(4‐pyridyl)benzamide, (III), all C12H9FN2O, crystallize in the P21/c space group (No. 14) with similar unit‐cell parameters and are isomorphous and isostructural at the primary hydrogen‐bonding level. An intramolecular C—H...O=C interaction is present in all three isomers [C...O = 2.8681 (17)–2.884 (2) Å and C—H...O117–118°], with an additional N—H...F [N...F = 2.7544 (15) Å] interaction in (III). Intermolecular amide–pyridine N—H...N hydrogen bonds link molecules into one‐dimensional zigzag chains [graph set C(6)] along the [010] direction as the primary hydrogen bond [N...N = 3.022 (2), 3.049 (2) and 3.0213 (17) Å]. These are augmented in (I) by C—H...π(arene) and cyclic C—F...π(arene) contacts about inversion centres, in (II) by C—F...F—C interactions [C...F = 3.037 (2) Å] and weaker C—H...π(arene)/C—H...F contacts, and in (III) by C—H...π(arene) and C=O...O=C interactions, linking the alternating chains into two‐dimensional sheets. Typical amide N—H...O=C hydrogen bonds [as C(4) chains] are not present [N...O = 3.438 (2) Å in (I), 3.562 (2) Å in (II) and 3.7854 (16) Å in (III)]; the C=O group is effectively shielded and only participates in weaker interactions/contacts. This series is unusual as the three isomers are isomorphous (having similar unit‐cell parameters, packing and alignment), but they differ in their interactions and contacts at the secondary level.  相似文献   

9.
6,6′‐Dimethoxygossypolone (systematic name: 7,7′‐dihydroxy‐5,5′‐diisopropyl‐6,6′‐dimethoxy‐3,3′‐dimethyl‐1,1′,4,4′‐tetraoxo‐2,2′‐binaphthalene‐8,8′‐dicarbaldehyde), C32H30O10, is a dimeric molecule formed by oxidation of 6,6′‐dimethoxygossypol. When crystallized from acetone, 6,6′‐dimethoxygossypolone has monoclinic (P21/c) symmetry, and there are two molecules within the asymmetric unit. Of the four independent quinoid rings, three display flattened boat conformations and one displays a flattened chair/half‐chair conformation. The angles between the planes of the two bridged naphthoquinone structures are fairly acute, with values of about 68 and 69°. The structure has several intramolecular O—H...O and C—H...O hydrogen bonds and several weak intermolecular C—H...O hydrogen bonds, but no intermolecular O—H...O hydrogen bonds.  相似文献   

10.
The structures of two ammonium salts of 3‐carboxy‐4‐hydroxybenzenesulfonic acid (5‐sulfosalicylic acid, 5‐SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3‐carboxy‐4‐hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S·H2O, (I), the 5‐SSA monoanions give two types of head‐to‐tail laterally linked cyclic hydrogen‐bonding associations, both with graph‐set R44(20). The first involves both carboxylic acid O—H...Owater and water O—H...Osulfonate hydrogen bonds at one end, and ammonium N—H...Osulfonate and N—H...Ocarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O—H...Osulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three‐dimensional framework structure through N—H...O and water O—H...O hydrogen bonds to sulfonate O‐atom acceptors. Anhydrous triammonium 3‐carboxy‐4‐hydroxybenzenesulfonate 3‐carboxylato‐4‐hydroxybenzenesulfonate, 3NH4+·C7H4O6S2−·C7H5O6S, (II), is unusual, having both dianionic 5‐SSA2− and monoanionic 5‐SSA species. These are linked by a carboxylic acid O—H...O hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half‐cations lying on crystallographic twofold rotation axes), give a pseudo‐centrosymmetric asymmetric unit. Cation–anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N—H...O hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three‐dimensional framework structure. This work further demonstrates the utility of the 5‐SSA monoanion for the generation of stable hydrogen‐bonded crystalline materials, and provides the structure of a dianionic 5‐SSA2− species of which there are only a few examples in the crystallographic literature.  相似文献   

11.
The title compound, C29H31N3O5S, forms needle‐shaped `segmented' crystals, thereby inhibiting successful single‐crystal data collection using conventional laboratory facilities. One crystallite of dimensions 0.15 × 0.03 × 0.01 mm yielded sufficent single‐crystal diffraction data on the Australian Synchrotron PX1 beamline. The two independent molecules in the asymmetric unit are nearly superimposable and show only minor conformational deviations from closely related compounds. The molecules pack using one N—H...O hydrogen bond and several phenyl C—H...O(=S), phenyl C—H...O(=C) and methylene C—H...O(=C) hydrogen bonds and weak C—H...π interactions.  相似文献   

12.
The title compound, C19H21N3O4S, crystallizes in the space group P2/c with two molecules in the asymmetric unit. The conformation of both molecules is very similar and is mainly determined by an intramolecular N—H...O hydrogen bond between a urea N atom and a sulfonyl O atom. The O and second N atom of the urea groups are involved in dimer formation via N—H...O hydrogen bonds. The intramolecular hydrogen‐bonding motif and conformation of the C—SO2—NH(C=O)—NH—C fragment are explored and compared using the Cambridge Structural Database and theoretical calculations. The crystal packing is characterized by π–π stacking between the 5‐cyanobenzene rings.  相似文献   

13.
Two polymorphs of the title compound [systematic name: 1‐(2,4‐dihydroxyphenyl)ethanone], C8H8O3, were investigated. The known structure [designated (I‐M); P21/c, Z = 4; previously investigated at room temperature by Robert, Moore, Eichhorn & Rillema (2007). Acta Cryst. E 63 , o4252] was redetermined at low temperature, and a new form [(I‐O); P212121, Z = 12] was discovered in the same sample. In both forms, the molecules are planar (apart from the methyl H atoms) and they contain intramolecular O—H...O=C hydrogen bonds. In polymorph (I‐M), molecules are linked into chains by a single intermolecular O—H...O hydrogen bond, and the chains are linked into sheets by two C—H...O hydrogen bonds. Three O—H...O hydrogen bonds link the molecules of polymorph (I‐O) into chains and neighbouring chains are connected by one C—H...O interaction to form an offset layer structure. Two weak methyl C—H...O interactions link the layers.  相似文献   

14.
The title compound, C19H29NO, is a C17‐oxime derivative of a potent aromatase inhibitor, which surprisingly has been found to have no inhibitory power. It crystallizes with two independent molecules in the asymmetric unit. C=N—O—H...N hydrogen bonds link pairs of molecules to form dimers almost parallel to the bc plane. Cohesion of the structure is also due to another three C—H...O hydrogen bonds directed along the a axis. This hydrogen‐bonding scheme can be correlated to the almost complete loss of inhibitory power of the title compound.  相似文献   

15.
The asymmetric unit of the title compound, C12H18O2, contains two independent molecules. They differ only slightly in conformation but form completely different intermolecular hydrogen‐bonded arrays. One molecule exhibits disorder in the hydroxy group region, but this does not influence the formation of hydrogen bonds. The bulky tert‐butyl group on one side of the carbinol C atom and the benzene ring on the other side promote the formation of discrete dimeric motifs via hydrogen‐bridged hydroxy groups. Dimers are further joined by strong hydroxy–methoxy O—H...O bonds to form chains with dangling alcohol groups. Weaker intermolecular C—H...O interactions mediate the formation of a two‐dimensional network.  相似文献   

16.
A fully ordered structure is reported for the polymorph of triphenylsilanol–4,4′‐bipyridyl (4/1), 4C18H16OSi·C10H8N2, having Z′ = 4. The asymmetric unit contains four similar but distinct five‐molecule aggregates, in which the central bipyridyl unit is linked to two molecules of triphenylsilanol via O—H...N hydrogen bonds, with a further pair of triphenylsilanol molecules linked to the first pair via O—H...O hydrogen bonds. An extensive series of C—H...π(arene) hydrogen bonds links these aggregates into complex sheets. This structure is compared with a previously reported structure [Bowes, Ferguson, Lough & Glidewell (2003). Acta Cryst. B 59 , 277–286], which was based on an erroneous disordered structural model arising from a false direct‐methods solution with reference to a strong pseudo‐inversion centre.  相似文献   

17.
The title compound, C21H26FN3O7, is assembled by N—H...O and O—H...O hydrogen bonds into well‐separated two‐dimensional layers of about 15 Å thickness. The crescent conformation of the molecules is stabilized by weak intramolecular C—H...O and C—H...F hydrogen bonds. The uridine moiety adopts an anti conformation. The ribofuranose ring exists in an envelope conformation. All the endocyclic uracil bonds are shorter than normal single C—N and C—C bonds, and five of them have comparable lengths, which implies a considerable degree of delocalization of the electron density within this ring.  相似文献   

18.
In the title racemic hemihydrated solvatomorph of carvedilol (carv), C24H26N2O4·0.5H2O, the asymmetric unit contains two independent organic moieties and one water molecule. Within this 2(carv)·H2O unit, the molecular components are strongly linked by hydrogen bonds and the unit acts as the basic building block for the crystal structure. Interactions parallel to (10) generate hydrogen‐bonded layers which are further linked by much weaker C—H...N/O interactions. The conformations of the organic molecules, as well as the hydrogen‐bonding interactions connecting them, are compared with other related structures in the literature.  相似文献   

19.
The title compound, C17H11F5N4O, is described and compared with two closely related analogues in the literature. There are two independent molecules in the asymmetric unit, linked by N—H...O hydrogen bonds and π–π interactions into dimeric entities, presenting a noticeable noncrystallographic C2 symmetry. These dimers are in turn linked by a medium‐strength type‐I C—F...F—C interaction into elongated tetramers. Much weaker C—H...F contacts link the tetramers into broad two‐dimensional substructures parallel to (101).  相似文献   

20.
rac‐2‐Isopropyl‐3‐(2‐nitrobenzyl)‐1,3‐thiadiazolin‐4‐one, C13H16N2O3S, is a rare example of a racemate crystallizing in the space group P212121, with one molecule each of S and R configurations, whose conformations are almost mirror images, within the asymmetric unit. The molecules of S configuration are linked by two C—H...O hydrogen bonds into a three‐dimensional framework, and the molecules of R configuration are linked by two further C—H...O hydrogen bonds into a different type of three‐dimensional framework; the two frameworks are linked by a fifth C—H...O hydrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号