首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the structures of the two enantiopure diastereoisomers of the title compound, C20H18ClN3O, which crystallize in different space groups, the molecules are very similar as far as bond distances and angles are concerned, but more substantial differences are observed in some torsion angles. The crystal structures of both molecules can be described as zigzag layers along the c axis. The packing is stabilized by hydrogen‐bond interactions of N—H...O, C—H...Cl and C—H...π types for 2‐[(R)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, and of N—H...N, C—H...O and C—H...π types for 2‐[(S)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, resulting in the formation of two‐ and three‐dimensional networks.  相似文献   

2.
The title ketocarboxylic acid [systematic name: (5R,8R,9S,10S,13R,14S,17R,20R)‐3‐oxo‐24‐norcholanic acid], C23H36O3, forms acid‐to‐acid hydrogen‐bonding chains [O...O = 2.620 (2) Å and O—H...O = 163 (3)°] in which all carboxyl groups adopt the rare anti conformation, while the ketone group does not participate in the hydrogen bonding. The occurrence and energetics of this conformation are discussed. One intermolecular C—H...O close contact exists, which plays a role in stabilizing the hydrogen‐bonding arrangement.  相似文献   

3.
The title macrocyclic amino alcohol compound, C14H30N4O, is investigated as a solid‐state synthon for the design of a self‐assembled tubular structure. It crystallizes in a helical column constructed by stereospecific O—H...N and N—H...N interactions. The hydrogen‐bonding interactions, dependent upon macrocyclic ring helicity and molecular conformation, link R,R and S,S enantiomers in a head‐to‐tail fashion, forming a continuous hydrophilic inner core.  相似文献   

4.
The title compounds, C12H13NO4, are derived from l ‐threonine and dl ‐threonine, respectively. Hydro­gen bonding in the chiral derivative, (2S/3R)‐3‐hydroxy‐2‐(1‐oxoisoindolin‐2‐yl)­butanoic acid, consists of O—Hacid?Oalkyl—H?O=Cindole chains [O?O 2.659 (3) and 2.718 (3) Å], Csp3—H?O and three C—H?πarene interactions. In the (2R,3S/2S,3R) racemate, conventional carboxylic acid hydrogen bonding as cyclical (O—H?O=C)2 [graph set R22(8)] is present, with Oalkyl—H?O=Cindole, Csp3—H?O and C—H?πarene interactions. The COOH group geometry differs between the two forms, with C—O, C=O, C—C—O and C—C=O bond lengths and angles of 1.322 (3) and 1.193 (3) Å, and 109.7 (2) and 125.4 (3)°, respectively, in the chiral structure, and 1.2961 (17) and 1.2210 (18) Å, and 113.29 (12) and 122.63 (13)°, respectively, in the racemate structure. The O—C=O angles of 124.9 (3) and 124.05 (14)° are similar. The differences arise from the contrasting COOH hydrogen‐bonding environments in the two structures.  相似文献   

5.
The title compound, C18H18N4OS2, was prepared by reaction of S,S‐diethyl 2‐thenoylimidodithiocarbonate with 5‐amino‐3‐(4‐methylphenyl)‐1H‐pyrazole using microwave irradiation under solvent‐free conditions. In the molecule, the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.814 (4) and 0.186 (4), and the bonded distances provide evidence for polarization in the acylthiourea fragment and for aromatic type delocalization in the pyrazole ring. An intramolecular N—H...O hydrogen bond is present, forming an S(6) motif, and molecules are linked by N—H...O and N—H...N hydrogen bonds to form a ribbon in which centrosymmetric R22(4) rings, built from N—H...O hydrogen bonds and flanked by inversion‐related pairs of S(6) rings, alternate with centrosymmetric R22(6) rings built from N—H...N hydrogen bonds.  相似文献   

6.
Oxazolidin‐2‐ones are widely used as protective groups for 1,2‐amino alcohols and chiral derivatives are employed as chiral auxiliaries. The crystal structures of four differently substituted oxazolidinecarbohydrazides, namely N′‐[(E)‐benzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12N3O3, (I), N′‐[(E)‐2‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (II), (4S)‐N′‐[(E)‐4‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (III), and (4S)‐N′‐[(E)‐2,6‐dichlorobenzylidene]‐N,3‐dimethyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C13H13Cl2N3O3, (IV), show that an unexpected mild‐condition racemization from the chiral starting materials has occurred in (I) and (II). In the extended structures, the centrosymmetric phases, which each crystallize with two molecules (A and B) in the asymmetric unit, form A+B dimers linked by pairs of N—H...O hydrogen bonds, albeit with different O‐atom acceptors. One dimer is composed of one molecule with an S configuration for its stereogenic centre and the other with an R configuration, and possesses approximate local inversion symmetry. The other dimer consists of either R,R or S,S pairs and possesses approximate local twofold symmetry. In the chiral structure, N—H...O hydrogen bonds link the molecules into C(5) chains, with adjacent molecules related by a 21 screw axis. A wide variety of weak interactions, including C—H...O, C—H...Cl, C—H...π and π–π stacking interactions, occur in these structures, but there is little conformity between them.  相似文献   

7.
Two concomitant polymorphs, (I) and (II), of a β‐benzyl‐β‐hydroxyaspartate analogue [systematic name: dibenzyl 2‐benzyl‐2‐hydroxy‐3‐(4‐methylphenylsulfonamido)succinate], C32H31NO7S, crystallize from a mixture of ethyl acetate and cyclohexane at ambient temperature. The structure of (I) has triclinic (P) symmetry and that of (II) monoclinic (P21/c) symmetry. Both crystal structures are made up of a stacking of homochiral racemic dimers (2S,3S and 2R,3R) which are internally connected by a similar R22(9) hydrogen‐bonding pattern consisting of intermolecular N—H...O and O—H...O hydrogen bonds. The centroid of the racemic dimer lies on an inversion centre. The main structural difference between the two polymorphs is the conformational orientation of two of the four aromatic rings present in the molecule. Polymorph (II) is found to be twinned by reticular merohedry with twin index 3 and twin fractions 0.854 (1) and 0.146 (1).  相似文献   

8.
The title cocrystal contains two chiral conformational diastereomers, viz. (1S,2R,RN)‐ and (1S,2R,SN)‐, of [2,4‐di‐tert‐butyl‐6‐{[(1‐oxido‐1‐phenylpropan‐2‐yl)(methyl)amino]methyl}phenolato](methanol)‐cis‐dioxidomolybdenum(VI), [Mo(C25H35NO2)O2(CH3OH)], representing the first example of a structurally characterized molybdenum complex with enantiomerically pure ephedrine derivative ligands. The MoVI cations exhibit differently distorted octahedral coordination environments, with two oxide ligands positioned cis to each other. The remainder of the coordination comprises phenoxide, alkoxide and methanol O atoms, with an amine N atom completing the octahedron. The distinct complexes are linked by strong intermolecular O—H...O hydrogen bonds, resulting in one‐dimensional molecular chains. Furthermore, the phenyl rings are involved in weak T‐shaped/edge‐to‐face π–π interactions with each other.  相似文献   

9.
Methyl 2‐benzamido‐4‐(3,4‐dimethoxyphenyl)‐5‐methylbenzoate, C24H23NO5, (Ia), and N‐{5‐benzoyl‐2‐[(Z)‐2‐methoxyethenyl]‐4‐methylphenyl}benzamide, C24H21NO3, (IIa), were formed via a Diels–Alder reaction of appropriately substituted 2H‐pyran‐2‐ones and methyl propiolate or (Z)‐1‐methoxybut‐1‐en‐3‐yne, respectively. Each of these cycloadditions might yield two different regioisomers, but just one was obtained in each case. In (Ia), an intramolecular N—H...O hydrogen bond closes a six‐membered ring. A chain is formed due to aromatic π–π interactions, and a three‐dimensional framework structure is formed by a combination of C—H...O and C—H...π(arene) hydrogen bonds. Compound (IIa) was formed not only regioselectively but also chemoselectively, with just the triple bond reacting and the double bond remaining unchanged. Compound (IIa) crystallizes as N—H...O hydrogen‐bonded dimers stabilized by aromatic π–π interactions. Dimers of (IIa) are connected into a chain by weak C—H...π(arene) interactions.  相似文献   

10.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

11.
In the title compound, C24H36N6O6·C2H6OS, the carbonyl groups are in an antiperiplanar conformation, with O=C—C=O torsion angles of 178.59 (15) and −172.08 (16)°. An intramolecular hydrogen‐bonding pattern is depicted by four N—H...O interactions, which form two adjacent S(5)S(5) motifs, and an N—H...N interaction, which forms an S(6) ring motif. Intermolecular N—H...O hydrogen bonding and C—H...O soft interactions allow the formation of a meso‐helix. The title compound is the first example of a helical 1,2‐phenylenedioxalamide. The oxalamide traps one molecule of dimethyl sulfoxide through N—H...O hydrogen bonding. C—H...O soft interactions give rise to the two‐dimensional structure.  相似文献   

12.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

13.
Crystals of the title compound, C18H20N4O4, contain equal numbers of (R,R) and (S,S) mol­ecules, but these are not precise enantiomorphs, neither are they related by crystallographic symmetry; in addition, each mol­ecule exhibits approximate, but not exact, twofold rotational symmetry. There are intramolecular N—H?O hydrogen bonds [N?O 2.609 (4)–2.638 (5) Å; N—H?O 125–132°] and the mol­ecules are linked into molecular ladders by C—H?O hydrogen bonds [C?O 3.306 (6)–3.386 (6) Å; C—H?O 146–160°].  相似文献   

14.
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α‐disubstituted α‐amino acid and an α‐hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)‐Pms‐Acp‐(S)‐Pms‐Acp‐(S)‐Pms‐Acp‐NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, ( 3b ), as well as in the related linear tetradepsipeptide amide (S)‐Pms‐Aib‐(S)‐Pms‐Aib‐NMe2, C28H37N3O6, ( 5a ), the diastereoisomeric mixture (S,R)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2/(R,S)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2 (1:1), C32H41N3O6, ( 5b ), and (R,S)‐Mns‐Acp‐(S,R)‐Mns‐Acp‐NMe2, C30H37N3O6, ( 5c ) (Pms is phenyllactic acid, Acp is 1‐aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β‐turn conformation in the solid state, which is stabilized by intramolecular N—H…O hydrogen bonds. Whereas β‐turns of type I (or I′) are formed in the cases of ( 3b ), ( 5a ) and ( 5b ), which contain phenyllactic acid, the torsion angles for ( 5c ), which incorporates mandelic acid, indicate a β‐turn in between type I and type III. Intermolecular N—H…O and O—H…O hydrogen bonds link the molecules of ( 3a ) and ( 5b ) into extended chains, and those of ( 5a ) and ( 5c ) into two‐dimensional networks.  相似文献   

15.
The absolute configuration of the title cis‐(1R,3R,4S)‐pyrrolidine–borane complex, C18H34BNO2Si, was confirmed. Together with the related trans isomers (3S,4S) and (3R,4R), it was obtained unexpectedly from the BH3·SMe2 reduction of the corresponding chiral (3R,4R)‐lactam precursor. The phenyl ring is disordered over two conformations in the ratio 0.65:0.35. The crystallographic packing is dominated by the rarely found donor–acceptor hydroxy–borane O—H...H—B hydrogen bonds.  相似文献   

16.
In (2SR,4RS)‐7‐chloro‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13Cl2NO, (I), the molecules are linked by a combination of C—H...O and C—H...N hydrogen bonds into a chain of edge‐fused R33(12) rings. The isomeric compound (2S,4R)‐7‐chloro‐2‐exo‐(2‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), crystallizes as a single 2S,4R enantiomer and the molecules are linked into a three‐dimensional framework structure by two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (2S,4R)‐7‐chloro‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C20H16ClNO, (III), are also linked into a three‐dimensional framework structure, here by one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the patterns of supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

17.
In the molecule of (2,7‐dimethoxynaphthalen‐1‐yl)(3‐fluorophenyl)methanone, C19H15FO3, (I), the dihedral angle between the plane of the naphthalene ring system and that of the benzene ring is 85.90 (5)°. The molecules exhibit axial chirality, with either an R‐ or an S‐stereogenic axis. In the crystal structure, each enantiomer is stacked into a columnar structure and the columns are arranged alternately to form a stripe structure. A pair of (methoxy)C—H...F hydrogen bonds and π–π interactions between the benzene rings of the aroyl groups link an R‐ and an S‐isomer to form a dimeric pair. These dimeric pairs are piled up in a columnar fashion through (benzene)C—H...O=C and (benzene)C—H...OCH3 hydrogen bonds. The analogous 1‐benzoylated compound, namely (2,7‐dimethoxynaphthalen‐1‐yl)(phenyl)methanone [Kato et al. (2010). Acta Cryst. E 66 , o2659], (II), affords three independent molecules having slightly different dihedral angles between the benzene and naphthalene rings. The three independent molecules form separate columns and the three types of column are connected to each other via two C—H...OCH3 hydrogen bonds and one C—H...O=C hydrogen bond. Two of the three columns are formed by the same enantiomeric isomer, whereas the remaining column consists of the counterpart isomer. In the case of the fluorinated 1‐benzoylated naphthalene analogue, namely (2,7‐dimethoxynaphthalen‐1‐yl)(4‐fluorophenyl)methanone [Watanabe et al. (2011). Acta Cryst. E 67 , o1466], (III), the molecular packing is similar to that of (I), i.e. it consists of stripes of R‐ and S‐enantiomeric columns. A pair of C—H...F hydrogen bonds between R‐ and S‐isomers, and C—H...O=C hydrogen bonds between R(or S)‐isomers, are also observed. Consequently, the stripe structure is apparently induced by the formation of R...S dimeric pairs stacked in a columnar fashion. The pair of C—H...F hydrogen bonds effectively stabilizes the dimeric pair of R‐ and S‐enantiomers. In addition, the co‐existence of C—H...F and C—H...O=C hydrogen bonds makes possible the formation of a structure with just one independent molecule.  相似文献   

18.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

19.
The asymmetric unit of the optically resolved title salt, C8H12N+·C4H5O4S, contains a 1‐phenylethanaminium monocation and a thiomalate (3‐carboxy‐2‐sulfanylpropanoate) monoanion. The absolute configurations of the cation and the anion are determined to be S and R, respectively. In the crystal, cation–anion N—H...O hydrogen bonds, together with anion–anion O—H...O and S—H...O hydrogen bonds, construct a two‐dimensional supramolecular sheet parallel to the ab plane. The two‐dimensional sheet is linked with the upper and lower sheets through C—H...π interactions to stack along the c axis.  相似文献   

20.
rac‐2‐Isopropyl‐3‐(2‐nitrobenzyl)‐1,3‐thiadiazolin‐4‐one, C13H16N2O3S, is a rare example of a racemate crystallizing in the space group P212121, with one molecule each of S and R configurations, whose conformations are almost mirror images, within the asymmetric unit. The molecules of S configuration are linked by two C—H...O hydrogen bonds into a three‐dimensional framework, and the molecules of R configuration are linked by two further C—H...O hydrogen bonds into a different type of three‐dimensional framework; the two frameworks are linked by a fifth C—H...O hydrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号