首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the title compound 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐piperidone, C22H23NO3, (I), the central heterocyclic ring adopts a flattened boat conformation, while in the related salt 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐oxopiperidin­ium chloride, C22H24NO3+·Cl, (II), the ring exhibits a `sofa' conformation in which the N atom deviates from the planar fragment. The pendant benzene rings are twisted from the heterocyclic ring planes in both mol­ecules in the same direction, the range of dihedral angles between the ring planes being 24.5 (2)–32.7 (2)°. The dominant packing motif in (I) involves centrosymmetric dimers bound by weak intermolecular C—H⋯O hydrogen bonds. In (II), cations and anions are linked by strong N—H⋯Cl hydrogen bonds, while weak C—H⋯O and C—H⋯Cl hydrogen bonds link the cations and anions into a three‐dimensional framework.  相似文献   

2.
To enable a comparison between a C—H…X hydrogen bond and a halogen bond, the structures of two fluorous‐substituted pyridinium iodide salts have been determined. 4‐[(2,2‐Difluoroethoxy)methyl]pyridinium iodide, C8H10F2NO+·I, (1), has a –CH2OCH2CF2H substituent at the para position of the pyridinium ring and 4‐[(3‐chloro‐2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium iodide, C9H9ClF4NO+·I, (2), has a –CH2OCH2CF2CF2Cl substituent at the para position of the pyridinium ring. In salt (1), the iodide anion is involved in one N—H…I and three C—H…I hydrogen bonds, which, together with C—H…F hydrogen bonds, link the cations and anions into a three‐dimensional network. For salt (2), the iodide anion is involved in one N—H…I hydrogen bond, two C—H…I hydrogen bonds and one C—Cl…I halogen bond; additional C—H…F and C—F…F interactions link the cations and anions into a three‐dimensional arrangement.  相似文献   

3.
In the title compound, C15H13N2+·C24H20B, the pyridyl ring of the cation makes a dihedral angle of 1.6° with the benzene ring. Each is rotated in the same direction with respect to the central –C—CH=CH—C– linkage, by 3.8 and 5.3°, respectively. The anions have a slightly distorted tetra­hedral geometry. Mol­ecular packing analysis was carried out using the packing energy portioning scheme in the program OPEC. Around each anion in the crystal structure there are eight anions, which inter­act with the central anion through C—H⋯π inter­actions. The cations are hydrogen bonded in a head‐to‐tail fashion, forming chains along [10].  相似文献   

4.
2‐{1‐[(4‐Chloroanilino)methylidene]ethyl}pyridinium chloride methanol solvate, C13H13ClN3+·Cl·CH3OH, (I), crystallizes as discrete cations and anions, with one molecule of methanol as solvent in the asymmetric unit. The N—C—C—N torsion angle in the cation indicates a cis conformation. The cations are located parallel to the (02) plane and are connected through hydrogen bonds by a methanol solvent molecule and a chloride anion, forming zigzag chains in the direction of the b axis. The crystal structure of 2‐{1‐[(4‐fluoroanilino)methylidene]ethyl}pyridinium chloride, C13H13FN3+·Cl, (II), contains just one anion and one cation in the asymmetric unit but no solvent. In contrast with (I), the N—C—C—N torsion angle in the cation corresponds with a trans conformation. The cations are located parallel to the (100) plane and are connected by hydrogen bonds to the chloride anions, forming zigzag chains in the direction of the b axis. In addition, the crystal packing is stabilized by weak π–π interactions between the pyridinium and benzene rings. The crystal of (II) is a nonmerohedral monoclinic twin which emulates an orthorhombic diffraction pattern. Twinning occurs via a twofold rotation about the c axis and the fractional contribution of the minor twin component refined to 0.324 (3). 2‐{1‐[(4‐Fluoroanilino)methylidene]ethyl}pyridinium chloride methanol disolvate, C13H13FN3+·Cl·2CH3OH, (III), is a pseudopolymorph of (II). It crystallizes with two anions, two cations and four molecules of methanol in the asymmetric unit. Two symmetry‐equivalent cations are connected by hydrogen bonds to a chloride anion and a methanol solvent molecule, forming a centrosymmetric dimer. A further methanol molecule is hydrogen bonded to each chloride anion. These aggregates are connected by C—H...O contacts to form infinite chains. It is remarkable that the geometric structures of two compounds having two different formula units in their asymmetric units are essentially the same.  相似文献   

5.
In the structure of the complex of dibenzo‐18‐crown‐6 [systematic name: 2,5,8,15,18,21‐hexaoxatricyclo[20.4.0.09,14]hexacosa‐1(26),9,11,13,22,24‐hexaene] with 4‐methoxyanilinium tetrafluoroborate, C7H10NO+·BF4·C20H24O6, the protonated 4‐methoxyanilinium (MB‐NH3+) cation forms a 1:1 supramolecular rotator–stator complex with the dibenzo‐18‐crown‐6 molecule via N—H...O hydrogen bonds. The MB‐NH3+ group is attached from the convex side of the bowl‐shaped crown, in contrast with similar ammonium cations that nest in the curvature of the bowl. The cations are associated via C—H...π interactions, while the cations and anions are linked by weak C—H...F hydrogen bonds, forming cation–crown–anion chains parallel to [011].  相似文献   

6.
In the title compound, C15H16NO+·C24H20B, the pyridinium ring of the cation makes a dihedral angle of 4.3 (2)° with the benzene ring. Each is rotated in the same direction with respect to the central C—CH=CH—C linkage, by 10.0 (2) and 7.8 (2)°, respectively. The anions have a slightly distorted tetrahedral geometry. The most interesting feature of the structure is that the anions form a honeycomb‐like hexagonal structure down the b axis through C—H...π interactions. The hexagon is constructed from six BPh4 anions. The cations interact in a head‐to‐tail fashion along [010], forming chains, and pack antiparallel inside the above honeycomb‐like structure through C—H...π interactions.  相似文献   

7.
In the title compound, C9H18NO+·NO3, the piperidinium ring adopts a slightly deformed chair conformation and the nitrate anion is disordered. The ions are arranged in hydrogen‐bonded chains parallel to [001], in which the cations alternate with the anions. The intra­chain hydrogen bonds are bifurcated and link the O atoms of the anions to the N atoms of the cations.  相似文献   

8.
The title compounds are diastereoisomers with antipodean axial chirality. The M isomer crystallizes as a (1/3) acetone solvate, C32H30NO+·Br?·3C3H6O, while the P isomer crystallizes as a (1/1) di­chloro­methane solvate, C32H30NO+·Br?·CH2Cl2. In each structure, O—H?Br hydrogen bonds link the cations and anions to give ion pairs. The seven‐membered azepinium ring adopts the usual twisted‐boat conformation and its ring strain causes a slight curvature of the plane of each naphthyl ring.  相似文献   

9.
In the crystal structure of the title dopamine­rgic compound, C16H24NO2+·Br·H2O, protonation occurs at the piperidine N atom. The piperidine ring adopts a chair conformation and the cyclo­hexene ring adopts a half‐chair conformation; together with the planar benzene ring, this results in a relatively planar shape for the whole mol­ecule. Classical hydrogen bonds (N—H⋯Br, O—H⋯Br and O—H⋯O) produce an infinite three‐dimensional network. Hydrogen bonds between water ­mol­ecules and Br anions create centrosymmetric rings throughout the crystal structure. Structural comparison of the mol­ecule with the ergoline dopamine agonist pergolide shows that it is the hydrogen‐bond‐forming hydr­oxy or imino group that is necessary for dopamine­rgic activity, rather than the presence of a phenyl or a pyrrole ring per se.  相似文献   

10.
The crystal structures of the two title (E)‐stilbazolium halogenates, C20H17ClNO+·Cl and C20H17BrNO+·Br, are isomorphous, with an isostructurality index of 0.985. The azastyryl fragments are almost planar, with dihedral angles between the benzene and pyridine rings of ca 4.5°. The rings of the benzyl groups are, in turn, almost perpendicular to the azastyryl planes, with dihedral angles larger than 80°. The cations and anions are connected by O—H...X (X = halogen) hydrogen bonds. The halide anions are `sandwiched' between the charged pyridinium rings of neighbouring molecules, and weak C—H...O hydrogen bonds and C—H...X and C—H...π interactions also contribute to the crystal structures.  相似文献   

11.
The title compound, raloxifene hydro­chloride, C28H28NO4S+·Cl?, belongs to the benzo­thio­phene class of antiosteoporotic drugs. In the molecular cation, the 2‐phenol ring sustains a dihedral angle of 45.3 (1)° relative to the benzo­[b]­thio­phene system. The benzo­[b]­thio­phene and phenyl ring planes are twisted with respect to the carbonyl plane, with the smallest twist component occurring between the phenyl and carbonyl planes. The N atom bears the positive charge in the molecular cation and the piperidine ring adopts an almost perfect chair conformation. The Cl? anion is involved in the formation of N—H?Cl and O—H?Cl intermolecular hydrogen bonds, which lead to the formation of a layer of molecular cations.  相似文献   

12.
The title ionic compound, (C7H8N3)2[Ho2(C4H5O2)8], is constructed from two almost identical independent centrosymmetric anionic dimers balanced by two independent 2‐amino‐1H‐benzimidazol‐3‐ium (Habim+) cations. The asymmetric part of each dimer is made up of one HoIII cation and four crotonate (crot or but‐2‐enoate) anions, two of them acting in a simple η2‐chelating mode and the remaining two acting in two different μ22 fashions, viz. purely bridging and bridging–chelating. Symmetry‐related HoIII cations are linked by two Ho—O—Ho and two Ho—O—C—O—Ho bridges which lead to rather short intracationic Ho...Ho distances [3.8418 (3) and 3.8246 (3) Å]. In addition to the obvious Coulombic interactions linking the cations and anions, the isolated [Ho2(crot)8]2− and Habim+ ions are linked by a number of N—H...O hydrogen bonds, in which all N—H groups of the cation are involved as donors and all (simple chelating) crot O atoms are involved as acceptors. These interactions result in compact two‐dimensional structures parallel to (110), which are linked to each other by weaker π–π contacts between Habim+ benzene groups.  相似文献   

13.
The title compound, C24H20P+·C9H17NO5S, consists of an organic monovalent cation and an organic monovalent anion, the latter being derived from the TEMPO radical (TEMPO is 2,2,6,6‐tetra­methyl­piperidin‐1‐oxyl). Two inversion‐related anions interact via two –O—H⃛O—S– hydrogen bonds, forming a dimer in which there are no short contacts between the spin centres (–N—O) of the TEMPO(OH)SO3 anions. Furthermore, no significant magnetic interaction is observed between the dimers because the dimer is surrounded by cations. These results are consistent with the paramagnetic behaviour of the title salt.  相似文献   

14.
In the crystal structures of the title compounds, C12H12N42+·2BF4, (I), and C12H11N4+·ClO4, (II), respectively, infinite two‐ and one‐dimensional architectures are built up via N—H...F [in (I)] and conventional N—H...N [in (II)] hydrogen bonding. The N—N single bond in (I) lies on a crystallographic centre of symmetry; as a result, the two pyridinium rings are parallel. In (II), the pyridinium and pyridyl ring planes are inclined with a dihedral angle of 14.45 (3)°.  相似文献   

15.
The crystal structures of 2‐hydroxy‐5‐[(E)‐(4‐nitrophenyl)diazenyl]benzoic acid, C13H9N3O5, (I), ammonium 2‐hydroxy‐5‐[(E)‐phenyldiazenyl]benzoate, NH4+·C13H9N2O3, (II), and sodium 2‐hydroxy‐5‐[(E)‐(4‐nitrophenyl)diazenyl]benzoate trihydrate, Na+·C13H8N3O5·3H2O, (III), have been determined using single‐crystal X‐ray diffraction. In (I) and (III), the phenyldiazenyl and carboxylic acid/carboxylate groups are in an anti orientation with respect to each other, which is in accord with the results of density functional theory (DFT) calculations, whereas in (II), the anion adopts a syn conformation. In (I), molecules form slanted stacks along the [100] direction. In (II), anions form bilayers parallel to (010), the inner part of the bilayers being formed by the benzene rings, with the –OH and –COO substituents on the bilayer surface. The NH4+ cations in (II) are located between the bilayers and are engaged in numerous N—H...O hydrogen bonds. In (III), anions form layers parallel to (001). Both Na+ cations have a distorted octahedral environment, with four octahedra edge‐shared by bridging water O atoms, forming [Na4(H2O)12]4+ units.  相似文献   

16.
The title structure is a new modification of Tl2CrO4. There are four independent Tl+ cations and two [CrO4]2− anions in the structure. It is closely related to the already known modification, which belongs to the β‐K2SO4 family with two independent cations and one anion. In both modifications, the cations and anions are situated on crystallographic mirror planes. The volume of the asymmetric unit of the title structure is ∼0.4% smaller than that of the known modification belonging to the β‐K2SO4 family. The other difference between the two modifications is seen in the environment of the cations. In the title structure, none of the Tl+ cations is underbonded, in contrast with the modification isostructural with β‐K2SO4. In the β‐K2SO4 family with simple cations, underbonding of one of the constituent cations is typical. The dependence of the unit‐cell parameters on temperature does not indicate a phase transition in the interval 90–300 K.  相似文献   

17.
Crystals of the title salt, [(C6H5NH3)]+·[(HOOC(CH2)CH(OH)COO)] or C6H8N+·C4H5O5, are built up from protonated anilinium residues and monodissociated dl ‐malate ions. The NH3+ group of the anilinium cation is ordered at room temperature. Rotation of the NH3+ group along the C(aromatic)—Nsp3 bond (often observed at room temperature in other anilinium salts) is prevented by N—H⋯O hydrogen bonds between the NH3+ group and the malate anions. The anions are connected by four O—H⋯O hydrogen bonds into two‐dimensional sheets parallel to the (001) plane. The charged moieties, i.e. the anilinium cations and the sheets of hydrogen‐bonded malate anions, form two‐dimensional layers in which the phenyl rings of the anilinium residues lie perpendicular to the malate‐ion sheets. The conformation of the monodissociated malate ion in the crystal is compared with that obtained from ab initio molecular‐orbital calculations.  相似文献   

18.
The asymmetric unit of the title compound, C12H17N4OS+·I·1.25H2O, contains two crystallographically independent molecules. Both formula units assume the usual F conformation and have the hydroxyethyl group disordered over two sites, each with half occupation. Two thiamine cations are linked by hydrogen bonds into a cyclic dimer. These dimers are further connected by base‐pairing hydrogen bonds into a chain along [010]. The stacked dimers form channels, which are occupied by iodide anions. The cations and anions are associated by N—H...I hydrogen bonds, C—H...I interactions and I...thiazolium ring close contacts. The interactions between thiamine and the iodide anions are similar to those observed in monoclinic thiamine iodide 1.5‐hydrate [Hu & Zhang (1993). J. Inclusion Phenom. Mol. Recognit. Chem. 16 , 273–281].  相似文献   

19.
In the asymmetric unit of the title compound, C10H15N4O2+·H2PO4, there are two protonated amino­guanidinium cations and two dihydrogenphosphate anions. The positive charge on the protonated amidine group is delocalized over the three C—N bonds in a manner similar to that found in guanidinium salts. The amino­guanidinium cations are found to be the E‐isomer structures. Intra­molecular inter­actions of the N—H⋯N type are observed, leading to the formation of five‐membered rings. Extensive networks of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds stabilize the three‐dimensional network. In the crystal structure, π–π inter­actions between the benzene rings, with a distance of 3.778 (2) Å between the ring centroids, also affect the packing of the mol­ecules.  相似文献   

20.
There are two symmetry‐independent formula units of the title compound, C6H15N4O2+·F?·HF, per cell. Both cations have a zwitterionic form, protonated at both the guanidyl and amino groups. The two symmetry‐independent cations differ in their conformation. In one of them the Cγ atom is in a gauche position to both the amino and carboxyl groups, while in the other this atom is trans to the amino group. The two anions have very similar geometry. The F? ions are strongly hydrogen bonded to an HF molecule [F—H?F 2.233 (2) and 2.248 (3) Å], thereby forming an asymmetric non‐linear bifluoride anion. These F?F distances are the shortest reported for an asymmetric HF2? anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号