首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文将生物素(Biotin)修饰于Fe3O4磁性纳米粒子表面制备了BIO-MNPs纳米材料。盐酸阿霉素(DOX)可以通过与生物素之间的氢键作用和自聚集作用负载于BIO-MNPs表面,实验条件下的最大负载量可达823.6 mg/g,且BIO-MNPs@DOX对DOX的释放在弱酸性环境下更优。体外溶血实验以及细胞毒性实验证明BIO-MNPs具有良好的血液相容性和较低的生物毒性;体外细胞摄取实验证明BIO-MNPs@DOX对肝癌细胞和人乳腺癌细胞具有较好的靶向性能,且具有良好的抑制效果。以上结果表明BIO-MNPs可作为药物载体负载抗癌药物DOX,且BIOMNPs@DOX在癌细胞的靶向抑制方面具有一定的应用价值。  相似文献   

2.
采用溶剂热法合成了分散性良好的Fe3O4粒子,然后将油酸修饰到Fe3O4粒子表面,再通过疏水作用进行十六烷基三甲基氯化铵(CTAC)包覆,得到Fe3O4@CTAC粒子。采用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)、Zeta电位和振动样品磁强计(VSM)对Fe3O4@CTAC粒子进行了表征,结果表明:Fe3O4粒子表面包覆CTAC后粒径无明显变化,并且仍保持良好的单分散性;Fe3O4@CTAC粒子具有超顺磁性和良好的磁响应性能;Fe3O4@CTAC粒子的Zeta电位较高,分散体系具有较好的稳定性。对Fe3O4@CTAC粒子进行了抗菌性能及磁分离去除菌体测试,结果显示:当Fe3O...  相似文献   

3.
首先通过共沉淀法制备Fe3O4磁粒子,然后采用水热法制备Fe3O4/Bi2O3复合粒子,并利用X-射线衍射、X-光电子能谱、扫描电子显微镜等进行表征。结果表明,复合粒子由Fe3O4和Bi2O3组成,形貌呈球形,具有三维多级结构。在可见光照射下,所制备的复合粒子对罗丹明B的降解率达95.2%。降解完成后,在外界磁场的作用下,Fe3O4/Bi2O3很快从体系中分离,可进行重复利用,实现循环催化。实验发现,Fe3O4/Bi2O3经5次循环催化后,对罗丹明B的降解率仍达93%以上。  相似文献   

4.
通过溶剂热法,以FeOOH作为前驱体,以油酸作为表面活性剂,以十八烯为溶剂,制备了纳米Fe3O4颗粒,研究了油酸和FeCl3用量、反应时间对纳米Fe3O4粒子的大小以及分散性的影响.结果显示,FeCl3用量的增加和反应时间的延长均可使Fe3O4粒子粒径增大,油酸用量的增加会导致Fe3O4粒子粒径先减小再增大.利用XRD、TEM等手段对所制备颗粒的结构、形貌进行了表征,结果表明,所制备的纳米Fe3O4粒子属于反尖晶石结构.FeCl3用量为0.003mol,油酸用量为13.5mL时(即Fe3+/油酸约为1/15),在230℃反应12h得到结晶度较高,分散性良好,平均粒径比较小的纳米Fe3O4粒子.  相似文献   

5.
使用动态反应釜制备得到磁性粒子,与静态反应釜相比单次制备量提高20倍;通过扫描电子显微镜(SEM)、傅立叶红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对产物进行表征,证明获得了粒径200 nm左右的单分散Fe3O4粒子,并具有超顺磁性;对其表面进行SiO2包覆,获得具有良好分散性的Fe3O4@SiO2粒子。研究发现Fe3O4@SiO2对DNA提取具有可重复利用性,并且质粒DNA吸附到Fe3O4@SiO2上后可直接加入聚合酶链式反应(PCR)体系作为扩增模板。  相似文献   

6.
表面包覆惰性层是解决四氧化三铁(Fe3O4)粒子团聚、易氧化、亲水性差等问题的一种有效方法,但惰性层的引入一般会导致包覆后样品磁性能下降,从而限制了Fe3O4的应用.以正硅酸乙酯(TEOS)和氨水为原料,制备了具有良好磁响应性的Fe3O4/SiO2核壳结构.样品的结构、形貌、尺寸和表面吸附官能团采用X-ray粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和红外光谱(FTIR)等测试手段进行了表征.研究发现,TEOS加入方式影响SiO2层生长过程,从而影响包覆的均匀程度.Fe3O4/SiO2核壳结构表现出顺磁性和良好的磁响应性(52emu/g).  相似文献   

7.
Fe3O4磁性纳米粒子是目前应用最为广泛的磁性纳米材料,相比于其他材料而言,其制备过程简单、化学稳定性好、储存方便、成本低廉,且容易实现磁性分离。Fe3O4磁性纳米粒子表面容易被修饰大量的含氧官能团,使其易于和其他基团连接,因此具有极大的功能化潜力。经过功能化的Fe3O4磁性纳米粒子具有很高的饱和磁化率以及极好的超顺磁性,从而被广泛用作水体处理过程中吸附剂、催化剂等的基质材料。本文综述了近年来具有代表性的功能化Fe3O4磁性纳米材料,列举了一系列功能化Fe3O4磁性纳米材料的制备方法以及它们在去除水体中的有机物、重金属离子、染料、抗生素等污染物方面的应用,并对磁性纳米材料在实际应用中面临的问题进行了总结和分析。  相似文献   

8.
为了制备具有纳米多孔结构的磁性复合微球,采用正硅酸四乙酯(TEOS)和金属氯盐分别作为SiO2和铁氧体的前驱体,通过溶胶凝胶法制备将Fe3O4纳米颗粒分散于SiO2基体中的Fe3O4/SiO2磁性纳米复合微球,并用超临界干燥法对其进行干燥。利用X线衍射(XRD)、红外光谱(IR)、透射电镜(TEM)和振动试样磁场计(VSM)等分析测试手段对合成的材料进行性能表征。结果表明:复合粒子包覆完好、性能优良、分散性良好,制备颗粒的粒径为30 nm,比饱和磁化强度为84.09 A.m2/kg。  相似文献   

9.
包头钢铁厂的平炉尘含铁量高,粒径微细,并以γ-Fe2O3为主,经过提纯分级可以作为生产超细磁性材料的原料.利用同晶型间的拓扑转化原理,在有Fe2+离子存在及避免氧化的条件下,将平炉尘转化为超细尖晶石型铁酸盐Fe3O4.并和离子反应对比,对其反应条件进行了研究.  相似文献   

10.
通过化学氧化沉淀法制备出球形和八面体形貌的Fe3O4纳米颗粒,对其进行XRD、Raman和SEM等表征。以合成的纳米Fe3O4催化H2O2氧化降解橙黄Ⅱ,考察了不同形貌Fe3O4的类Fenton催化活性。结果表明:使用化学氧化沉淀法制备Fe3O4,在低pH(8~9)条件下所得到的产物呈类球形,高pH(13)条件得到的产物为八面体形貌,其粒径均在210nm左右,并且结晶良好。Fe3O4/H2O2体系能有效降解橙黄II,并且催化反应主要发生在Fe3O4表面,最佳催化条件为pH 3.0、温度40℃。类球形Fe3O4纳米颗粒的催化活性高于八面体Fe3O4,并且Fe3O4具有良好的化学稳定性,重复使用4次效果稳定。  相似文献   

11.
以FeSO44@7H 2O(AR),Fe(NO3)3@9H2O(AR),NH3@H2O(AR)为原料,用水热法制备纳米Fe3O44粒子;通过选用合适的分散剂来克服磁性颗粒的沉降,采用超声波分散的方法,制备在重力场和磁场中稳定性好的磁流体.研究了影响水基FeaO4磁流体性能的主要因素,得到最佳条件Fe(NO3)3@9H2O和FeSO4@7H2O的量比为1.75,水热反应温度为160℃,反应时间为5 h,1.5 g Fe3O4分散于100 mL水中所需分散剂的用量为0.75 mL.所制备的产物经XRD和粒度仪检测,结果表明产物为单一相的Fe3O44,水基Fe3O4磁流体体系的粒径在100nm以下.  相似文献   

12.
采用等体积浸渍法制备非均相Fenton反应催化剂Fe2O3/γ-Al2O3,以对羟基苯丙酸为降解目标物,考察了γ-Al2O3粒径的大小、浸渍时间、焙烧温度、焙烧时间、负载量等因素对催化剂催化活性的影响.通过热重、XRD、电镜扫描对催化剂形貌和特征的分析以及催化反应的结果分析可知,在γ-Al2O3上负载了催化剂Fe2O3,但Fe2O3并不均匀,在γ-Al2O3为100~120目,负载量为11.7%,浸渍10,h,焙烧温度为550,℃,焙烧4,h,与60,mg/L的对羟基苯丙酸反应60,min的条件下,催化剂的活性最好,对羟基苯丙酸的去除率可达到70.26%.重复实验说明催化剂的稳定性较好.  相似文献   

13.
以价格低廉的Fe3O4纳米颗粒为填料,聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)为基材制备复合材料,并采用高氯酸(HClO4)对其进行后处理,获得PEDOT:PSS/Fe3O4柔性自支撑薄膜。利用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、X射线电子能谱(XPS)、拉曼光谱(Raman)对复合薄膜进行形貌和结构表征,并采用循环伏安(CV)和恒电流充放电(GCD)对其进行电化学性能分析。结果表明:经酸处理的PEDOT:PSS/Fe3O4复合薄膜表面粗糙,电化学性能得到较大提升,且倍率性能较好。在1 A/g时,放电比电容可达106 F/g,远远超出PEDOT:PSS原始膜和未处理的PEDOT:PSS/Fe3O4复合薄膜;在10 A/g时,放电比电容能够保持在81 F/g。  相似文献   

14.
采用水相共沉淀法,以没食子酸作为还原剂,还原Ag[(NH3)2]+,制备出核壳结构的Fe3O4/Ag磁性纳米颗粒.研究了该磁性纳米颗粒对于对硝基苯甲醛还原反应的催化性能,研究结果显示:在40℃,纳米颗粒浓度为0.08%时,反应的收率可接近97%.同时使用过的纳米颗粒可较为方便地从反应液中分离,经多次循环使用后,催化性能没有明显下降.  相似文献   

15.
采用化学共沉淀法制备了纳米级Fe3O4磁性粒子,以油酸钠改性后的磁性Fe3O4粒子作为模板,以一次性聚乳酸(PLA)饭盒作为聚乳酸原料,采用溶剂扩散法制备了磁性PLA-Fe3O4复合微球.利用扫描电镜、红外光谱仪及热重分析仪对所得产物的形貌、组成和含量进行了表征.以茜素红(AR)模拟染料废水,探讨了磁性PLA-Fe3O4复合微球对染料茜素红的脱除效率,研究了吸附时间,磁性PLA-Fe3O4复合微球的用量,溶液的pH及溶液的初始浓度等因素对茜素红脱除效率的影响.结果表明:磁性PLA-Fe3O4复合微球的用量为25mg、pH为4.3、吸附时间为2h、溶液起始浓度为19mg/L时吸附率可达90%以上.  相似文献   

16.
采用水热法制备了Fe3O4纳米粉体,并与Bi-BiOBr纳米材料进行了复合,成功的得到了Fe3O4/Bi-BiOBr复合纳米粉体。采用X射线衍射仪、场发射扫描电子显微镜、傅里叶红外光谱仪等仪器对样品进行了表征。结果表明,Fe3O4/Bi-BiOBr复合纳米材料被成功合成;在复合材料活化PMS去除罗丹明B (RhB)的降解试验中,考察了Fe和Bi的原子质量比(m(Fe):m(Bi))、催化剂质量浓度、PMS质量浓度等因素对光催化性能的影响。结果表明,光反应80 min后,降解率均达到95%以上;经过5次循环试验后,降解率仍能达到92.12%,具有良好的稳定性;催化过程中·OH为主要活性物种,其次为SO-4·和h+。  相似文献   

17.
在1,2-丙二醇溶剂中,以FeSO4·7H2O和KOH为原料,200℃水热法反应24h,合成了Fe3O4立方体.通过对反应温度、KOH浓度、1,2-丙二醇比例对产物形貌影响,研究了KOH在Fe3O4立方体的形成过程中的作用,并提出了可能的生长机理.运用扫描电镜和X射线衍射对其颗粒结构进行表征.结果表明,Fe3O4立方体为单晶面心立方相结构,尺寸大约为1μm.  相似文献   

18.
基于铁磁/重金属异质结结构的纯自旋流电子器件具有低功耗、非易失性等优点,是当前自旋电子学研究的核心内容。该文利用超导量子干涉仪以及铁磁共振测量系统等手段,对分子束外延法生长的铁磁/重金属异质结Fe3O4/Au单晶薄膜的静态及动态磁性能进行了系统研究。研究表明,随薄膜厚度的增加,Fe3O4的单轴磁各向异性逐渐减小而磁晶各向异性逐渐增强。Au覆盖层的引入有助于单晶超薄膜的晶格弛豫,进而有效增强了Fe3O4的磁各向异性。该研究为铁磁/重金属异质结的构建提供了新的思路,有望推动其在纯自旋流电子器件中的实用化进程。  相似文献   

19.
文章比较了Co3O4/GO及Mn3O4/GO两种催化剂催化Oxone对NOx氧化效果的影响,考察了pH、Oxone投加量及温度等因素对催化Oxone氧化NOx效果的影响。研究结果表明:在相同的试验情况下,Co3O4/GO催化Oxone氧化NOx的效果要优于Mn3O4/GO。  相似文献   

20.
为揭示纳米材料原位覆盖对表层沉积物重金属的影响规律,开展室内培养原位沉积物柱试验,利用微界面分析技术、高分辨率平衡式间隙水采集技术(HR-Peeper)和薄膜扩散梯度技术(DGT),探究纳米Fe3O4原位覆盖对表层沉积物中Co、Ni释放的影响机制。试验结果表明:在纳米Fe3O4覆盖下沉积物pH值较对照组逐渐增大,Eh值先减小后增大;纳米Fe3O4覆盖可有效吸附间隙水中的溶解态Co和Ni,间隙水中的溶解态Co和Ni最大有效吸附率分别为27.07%及26.42%,有效影响深度分别为30 mm和10 mm;纳米Fe3O4覆盖有效抑制了沉积物中有效态Co和Ni向间隙水和上覆水扩散,沉积物中有效态Co和Ni含量分别降低了50.26%和15.31%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号