首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, [Nd2(C5H6O4)2(C8H4O4)(H2O)4]·17H2O, obtained via hydrothermal reaction of Nd2O3 with glutaric acid and terephthalic acid, assembles as a three‐dimensional open framework with ten‐coordinate Nd–O polyhedra. The asymmetric part of the unit cell contains half a glutarate anion, a quarter of a terephthalate dianion, half an NdIII cation, one coordinated water molecule and 4.25 solvent water molecules. Each [NdO10] coordination polyhedron is comprised of six O atoms originating from four glutarate anions, two others from a terephthalate carboxylate group, which coordinates in a bidentate fashion, and two from water molecules. The Nd—O distances range from 2.4184 (18) to 2.7463 (18) Å. The coordination polyhedra are interconnected by the glutarate anions, extending as a two‐dimensional layer throughout the bc plane. Individual two‐dimensional layers are interlinked via terephthalate anions along the a axis. This arrangement results in rectangular‐shaped cavities with interstices of approximately 3.5 × 6 × 6.5 Å (approximately 140 Å3), which are occupied by water molecules. The NdIII cations, terephthalate anions, glutarate anions and one of the interstitial water molecules are located on special crystallographic positions. The Nd–terephthalate–Nd units are located across twofold rotation axes parallel to [100], with the NdIII cations located directly on these axes. In addition, the terephthalate anion is bisected by a crystallographic mirror plane perpendicular to that axis, thus creating an inversion centre in the middle of the aromatic ring. The glutarate ligand is bisected by a crystallographic mirror plane perpendicular to (001). One of the solvent water molecules lies on a site of 2/m symmetry, and the symmetry‐imposed disorder of its H atoms extends to the H atoms of the other four solvent water molecules, which are disordered over two equally occupied and mutually exclusive sets of positions.  相似文献   

2.
Two rare earth metal‐organic framework compounds [Ybsip(H2O)5] · 3H2O ( 1 ) and [Dysip(H2O)4] ( 2 ) (NaH2sip: 5‐sulfoisophthalic acid sodium salt) were synthesized hydrothermally, and characterized by single‐crystal X‐ray diffraction, elemental analysis, and FT‐IR spectroscopy. In complex 1 , each YbIII atom is nine‐coordinate with a distorted monocapped tetragonal prismatic arrangement. Two carboxylate groups of each sip3– molecule adopt the same μ1‐η11 chelating coordination model connecting two YbIII atoms. The oxygen atoms of the sulfonate group do not participate in coordination with YbIII. The whole sip3– molecule acts as a μ2 bridge to form an one‐dimensional (1D) chain structure. The 1D chains are linked by hydrogen bonding to generate two‐dimensional layers, and are further combined together to form a three‐dimensional structure. In complex 2 , the DyIII atom is nine‐coordinate with a distorted monocapped tetragonal antiprismatic arrangement. In each sip3– anion, two carboxylate groups take the same μ1‐η11 chelating coordination mode, only an oxygen atom of sulfonate group bond to DyIII ion. The whole ligand sip3– acts as a μ3 bridge linking three different DyIII ions to generate a wave‐like two‐dimensional network with (6,3) topological structure. The two‐dimensional networks are further linked by O–H ··· O hydrogen bonds to form a three‐dimensional structure. The thermal and luminescent properties of both complexes are investigated.  相似文献   

3.
The title mononuclear complex, [Yb(C5H7O2)3(C12H8N2)(H2O)], is a most uncommon carboxylate complex of a rare earth metal. Each YbIII ion is eightfold coordinated, being bonded to five O atoms of three dimethylacrylate groups, both N atoms of a phenanthroline and one O atom of a water molecule, giving a distorted square antiprismatic coordination polyhedron.  相似文献   

4.
A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR, X‐ray photoelectron spectroscopy and single‐crystal X‐ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIII centre is seven‐coordinated by three O atoms and four N atoms. The coordination geometry of each BiIII atom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembled via O—H...O hydrogen bonds, resulting in the formation of a three‐dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid‐to‐centroid distances of 3.461 (4) and 3.641 (4) Å.  相似文献   

5.
Single crystals of [Yb(NCS)3(H2O)5] · H2O were synthesized from a salt‐metathesis reaction between stoichiometric amounts of aqueous solutions of Yb2(SO4)3 · 8H2O and Ba(NCS)2 · 3H2O driven by the precipitation of Ba(SO4), followed by isothermic evaporation of the filtered‐off solution at room temperature under atmospheric conditions. These crystals of the title compound came as transparent, colorless and hygroscopic needles. According to the X‐ray diffraction structure analysis [Yb(NCS)3(H2O)5] · H2O crystallizes in the monoclinic space group P21 with the lattice parameters a = 845.38(5), b = 719.26(4), c = 1219.65(7) pm, β = 103.852(3)° for Z = 2. The acentric crystal structure contains crystallographically unique Yb3+ cations, each surrounded by three thiocyanate anions, all grafting with their nitrogen atoms, and five water molecules forming a neutral [Yb(NCS)3(H2O)5] complex with square antiprismatic shape, completed by a sixth interstitial water molecule. ATR‐FT infrared and single‐crystal Raman spectra of [Yb(NCS)3(H2O)5] · H2O confirm these findings.  相似文献   

6.
The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL? is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1?) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL? ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm?1.  相似文献   

7.
In the title complex, {[Cd2(C8H3NO6)2(C4H10N2)(H2O)4]·2H2O}n, the CdII atoms show distorted octahedral coordination. The two carboxylate groups of the dianionic 2‐nitroterephthalate ligand adopt monodentate and 1,2‐bridging modes. The piperazine molecule is in a chair conformation and lies on a crystallographic inversion centre. The CdII atoms are connected via three O atoms from two carboxylate groups and two N atoms from piperazine molecules to form a two‐dimensional macro‐ring layer structure. These layers are further aggregated to form a three‐dimensional structure via rich intra‐ and interlayer hydrogen‐bonding networks. This study illustrates that, by using the labile CdII salt and a combination of 2‐nitroterephthalate and piperazine as ligands, it is possible to generate interesting metal–organic frameworks with rich intra‐ and interlayer O—H...O hydrogen‐bonding networks.  相似文献   

8.
The title compound, {[Cd2(C10H12N2O8)(H2O)]·H2O}n, consists of two crystallographically independent CdII cations, one ethylenediaminetetraacetate (edta) tetraanion, one coordinated water molecule and one solvent water molecule. The coordination of one of the Cd atoms, Cd1, is composed of five O atoms and two N atoms from two tetraanionic edta ligands in a distorted pentagonal–bipyramidal coordination geometry. The other Cd atom, Cd2, is six‐coordinated by five carboxylate O atoms from five edta ligands and one water molecule in a distorted octahedral geometry. Two neighbouring Cd1 atoms are bridged by a pair of carboxylate O atoms to form a centrosymmetric [Cd2(edta)2]4− unit located on the inversion centre, which is further extended into a two‐dimensional layered structure through Cd2—O bonds. There are hydrogen bonds between the coordinated water molecules and carboxylate O atoms within the layer. The solvent water molecules occupy the space between the layers and interact with the host layers through O—H...O and C—H...O interactions.  相似文献   

9.
Single crystals of K2Cu5Cl8(OH)4·2H2O were grown using hydrothermal techniques. The compound is monoclinic with a = 11.6424(11), b = 6.5639(4), c = 11.7710(10)Å, β = 91.09(1)°, V = 899.4(2)Å3, space group P21/c, Z = 2. The crystal structure was determined using single crystal X‐ray diffraction data and refined to a residual of R(|F|) = 0.025 for 1208 independent observed reflections with I > 2σ(I). Two out of three crystallographically independent Cu atoms are coordinated to four near hydroxyl groups or chlorine atoms and two more distant Cl atoms, giving an octahedrally Jahn‐Teller distorted (4+2)‐configuration. For the remaining third copper cation a square‐planar coordination can be found. Edge‐sharing of the octahedra results in the formation of kagome‐type sheets parallel to (100). The octahedral layers are decorated on both sides by planar [Cu(OH)2Cl2]‐units around the third Cu atom. The K atoms are located between adjacent sheets and are surrounded by six Cl atoms as well as two water molecules. The coordination polyhedra about the K‐atoms can be described as distorted bicapped trigonal prisms. Additional linkage is provided by intra‐ as well as inter‐layer hydrogen bonds (O—H···Cl, O—H···O).  相似文献   

10.
The hydrothermal reaction of SnCl2·2H2O with 4‐phosphonobenzenesulfonic acid (H3L) and sodium hydroxide has yielded the title compound, poly[μ‐hydroxido‐μ7‐(4‐phosphonatobenzenesulfonato)‐ditin(II)], [Sn2(C6H4O6PS)(OH)]n. The inorganic building unit is an Sn4O12 cluster which is composed of edge‐sharing SnO4 and SnO5 polyhedra. The clusters are interconnected via P and S atoms from the organic acid to form layers in the ab plane. These layers are linked to each other through pillaring benzene groups parallel to the c axis to form a three‐dimensional structure.  相似文献   

11.
The title compound, aqua­chloro{2,2′‐[1,2‐ethanediyl­bis­(nitrilo­methyl­idyne)]­diphenolato‐κ4O,N,N′,O′}manganese(III),[MnCl(C16H14N2O2)(H2O)], is a neutral manganese(III) complex with a pseudo‐octahedral metal centre. The equatorial plane comprises the four donor atoms of the tetradentate Schiff base ligand [Mn—O 1.886 (4) and 1.893 (4) Å, and Mn—N 1.978 (5) and 1.982 (5) Å], with a water mol­ecule [Mn—O 2.383 (4) Å] and a Cl? ligand [Mn—Cl 2.4680 (16) Å] completing the coordination sphere. The distorted geometry is highlighted by the marked displacement of the MnIII ion out of the least‐squares plane of the four Schiff base donor atoms by 0.165 (2) Å. These monomeric MnIII centres are then linked into a polymeric array via hydrogen bonds between the coordinated water mol­ecule and the phenolic O‐atom donors of an adjacent MnIII centre [O—H?O 2.789 (5) and 2.881 (5) Å].  相似文献   

12.
The title compound, [Ni(C2H8N2)3][Ni(C3HN3O2)2]·H2O, appears to be a modular associate consisting of two complex counter‐ions, containing bivalent nickel as the central atom in both cases, and a solvent water mol­ecule. The NiII ion in the complex cation lies on the C2 crystallographic axis. Its coordination environment is formed by six N atoms of three ethyl­ene­diamine (en) mol­ecules, representing a distorted octa­hedral geometry. The NiII ion in the complex anion occupies a position at the center of inversion. It exhibits a distorted square‐planar coordination geometry formed by four N atoms belonging to the deprotonated oxidoimine and amide groups of the two doubly charged 2‐cyano‐2‐(oxidoimino)acetamidate anions, situated in trans positions with respect to each other. In the crystal packing, the complex anions are linked by water mol­ecules via hydrogen bonds between the amide O atoms and water H atoms, forming chains translated along the a direction. The [Ni(en)3]2+ cations fill empty spaces between the translational chains, connecting them by hydrogen bonds between the oxime and amide O atoms of the anions and the amine H atoms of the cations, forming layers along the ac plane. The water mol­ecules provide connection between layers through N atoms of the cations, thus forming a three‐dimensional modular structure.  相似文献   

13.
A new chemical and structural interpretation of K5Ce2(SO4)6·H2O ( I ) and a redetermination of the structure of K2Ce(SO4)3·H2O ( II ) is presented. The mixed‐valent compound I crystallizes in the space group C2/c with a = 17.7321(3), b = 7.0599(1), c = 19.4628(4) Å, β = 112.373(1)° and Z = 4. Compound I has been discussed earlier with space group Cc. In the structure of I , there are pairs of edge sharing cerium polyhedra connected by sulfate oxygen atoms in the μ3 bonding mode. These cerium dimers are linked through edge and corner sharing sulfate bridges, forming layers. The layers are joined by potassium ions which together with the water molecules are placed between the layers. No irregularity in the distribution of the CeIII and CeIV to cause the lost of a crystallographic center of symmetry was detected. We suggest that the charge exerted by the extra f1 electron for every cerium dimer is delocalized over the Ce1–O2–Ce2 moiety in a non‐bonding mode. As a result, the oxidations state of each cerium ion is a mean value between III and IV at each atomic position. Compound II crystallizes in the space group C2 with a = 20.6149(2), b = 7.0742(1), c = 17.8570(1) Å, β = 122.720(1)° and Z = 8. The hydrogen atoms have been located and the absolute structure has been established. Neither hydrogen atom positions nor anisotropic displacement parameters were given in the previous reports. In compound II , the cerium polyhedra are connected by edge and corner sharing sulfate groups forming a three‐dimensional network. This network contains Z‐shaped channels hosting the charge compensating potassium ions.  相似文献   

14.
Pale pink crystals of Nd2(SeO3)2(SeO4) · 2H2O were synthesized under hydrothermal conditions from H2SeO3 and Nd2O3 at about 200 °C. X‐ray diffraction on powder and single‐crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) Å, b = 7.0783(5) Å, c = 13.329(1) Å, β = 104.276(7)°). The crystal structure of Nd2(SeO3)2(SeO4) · 2H2O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the NdIII atom in the shape of a bi‐capped trigonal prism. The oxygen atoms are part of pyramidal (SeIVO3)2? groups, (SeVIO4)2? tetrahedra and water molecules. The [NdO8] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three‐dimensional framework. The dehydration of Nd2(SeO3)2(SeO4) · 2H2O starts at 260 °C. The thermal decomposition into Nd2SeO5, SeO2 and O2 at 680 °C is followed by further loss of SeO2 leaving cubic Nd2O3.  相似文献   

15.
The crystal structure of the title compound, K[(CN)2CC(O)NH2)] or K+·C4H2N3O, conventionally abbreviated as Kcdm, where cdm is carbamoyldi­cyano­methanide, is described. The bond lengths and angles of the cdm cation are comparable to those reported previously for [M(cdm)2(H2O)4]·2H2O (M = Ni, Mn and Co). The K atoms are coordinated to four nitrile N atoms and two carbonyl O atoms in a distorted trigonal prismatic fashion, with two further N atoms semicoordinated through the centers of two prism side faces. This coordination leads to the formation of mixed anion–cation sheets parallel to the ab plane, which are joined together via hydrogen‐bonding interactions. The cdm anion is potentially useful for the formation of transition metal coordination polymers, in which magnetic superexchange could occur through a bidentate cdm bridge. Kcdm provides a model compound by which the molecular geometry of the cdm anion can be analyzed.  相似文献   

16.
The coordination mode of the dimethylmalonate ligand in the two title CuII complexes, {[Cu(C5H3O4)(H2O)]·H2O}n, (I), and [Cu(C5H3O4)(H2O)]n, (II), is the same, with chelated six‐membered, bis‐monodentate and bridging bonding modes. However, the coordination environment of the CuII atoms, the connectivity of their metal–organic frameworks and their hydrogen‐bonding interactions are different. Complex (I) has a perfect square‐pyramidal CuII environment with the aqua ligand in the apical position, and only one type of square grid consisting of CuII atoms linked via carboxylate bridges to three dimethylmalonate ligands, with weak hydrogen‐bond interactions within and between its two‐dimensional layers. Complex (II) has a coordination geometry that is closer to square pyramidal than trigonal bipyramidal for its CuII atoms with the aqua ligand now in the basal plane. Its two‐dimensional layer structure comprises two alternating grids, which involve two and four different dimethylmalonate anions, respectively. There are strong hydrogen bonds only within its layers.  相似文献   

17.
Oxalato‐ and Squarato‐Bridged Threedimensional Networks: The Crystal Structures of La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O and K[Bi(C2O4)2] · 5 H2O The title compounds have been formed by hydrolysis of amino‐ and thioderivatives of squaric acid in the presence of LaIII and BiIII ions. Both compounds are threedimensional coordination polymers in the solid state, as shown by single crystal X‐ray crystallography. In La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O oxalato‐bridged pairs of LaO9 polyhedra are connected with identical neighbouring polyhedra by squarate ions. In K[Bi(C2O4)2] · 5 H2O each Bi atom is fourfold linked to other Bi atoms by the oxalate ions. The resulting 3D network shows a diamond‐like topology with square‐shaped channels. In both structures the channels are partially filled by water molecules.  相似文献   

18.
In the title compound, [U(C9H4INO4S)O2(H2O)3]·2H2O, the asymmetric unit contains a UO22+ ion coordinated by the N and O atoms of a 7‐iodo‐8‐oxidoquinoline‐5‐sulfonate dianion (ferron anion) and three coordinated water molecules, and two uncoordinated water molecules. The UO22+ ion exhibits a seven‐coordinate pentagonal bipyramidal geometry. The usual sulfonate oxygen coordination is absent but the sulfonate O atoms, along with the coordinated and lattice water molecules, play a vital role in assembling the three‐dimensional structure via an extensive network of intermolecular O—H...O hydrogen bonds and π–π stacking interactions.  相似文献   

19.
The asymmetric unit of the title compound, [InNa(C3H5O3)4]n, consists of one InIII ion, one NaI ion and four crystallographically independent l ‐lactate monoanions. The coordination of the InIII ion is composed of five carboxylate O and two hydroxy O atoms in a distorted pentagonal–bipyramidal coordination geometry. The NaI ion is six‐coordinated by four carboxylate O atoms and two hydroxy O atoms from four l ‐lactate ligands in a distorted octahedral geometry. Each InIII ion is coordinated by four surrounding l ‐lactate ligands to form an [In(l ‐lactate)4] unit, which is further linked by NaI ions through Na—O bonds to give a two‐dimensional layered structure. Hydrogen bonds between the hydroxy groups and carboxylate O atoms are observed between neighbouring layers.  相似文献   

20.

Abstract  

A new lanthanide coordination polymer, {[Yb4 3 -OH)4(bpdc)4(H2O)6]}2·17(H2O) (1), which contains the tetranuclear lanthanide cluster of cubane-like [Yb4 3 -OH)4]8+, was obtained by hydrothermal reaction. As building blocks, [Yb4 3 -OH)4]8+ clusters were further assembled into two-dimensional network structure through the linking of 2,2′-bipyridine-3,3′-dicarboxylate (bpdc) with different four coordination modes. It is unprecedented that the adjacent [Yb4 3 -OH)4]8+ clusters are in the arraying form of ···AABB···(Yb1–Yb4 unit as A and Yb5–Yb8 unit as B). The thermal stability and magnetic property of compound 1 were investigated further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号