首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bimetallic title complex, [CuFe(CN)5(C12H30N6O2)(NO)] or [Cu(L)Fe(CN)5(NO)] [where L is 1,8‐bis(2‐hydroxy­ethyl)‐1,3,6,8,10,13‐hexa­aza­cyclo­tetra­decane], has a one‐dimensional zigzag polymeric –Cu(L)–NC–Fe(NO)(CN)3–CN–Cu(L)– chain, in which the CuII and FeII centres are linked by two CN groups. In the complex, the CuII ion is coordinated by four N atoms from the L ligand [Cu—N(L) = 1.999 (2)–2.016 (2) Å] and two cyanide N atoms [Cu—N = 2.383 (2) and 2.902 (3) Å], and has an elongated octahedral geometry. The FeII centre is in a distorted octahedral environment, with Fe—N(nitroso) = 1.656 (2) Å and Fe—C(CN) = 1.938 (3)–1.948 (3) Å. The one‐dimensional zigzag chains are linked to form a three‐dimensional network via N—H⋯N and O—H⋯N hydrogen bonds.  相似文献   

2.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

3.
In the title polymeric heterometallic compound, {[Cu3Gd(C6H4NO2)3Cl3(H2O)2]·0.5H2O}n, comprising copper(I) and gadolinium(III) cations bridged by nicotinate (nic) ligands and chloride anions, the GdIII centers display a bicapped trigonal prismatic geometry, defined by six carboxylate O atoms and two water molecules. For copper(I), one Cu center is three‐coordinated by three chloride ions and displays a trigonal–planar geometry; the other two Cu centers are four‐coordinated and display a very distorted tetrahedral geometry. The chloride anions act in μ2‐ and μ3‐bridging modes, linking the CuI ions into an infinite chain. The nic ligand exhibits a tridentate coordination mode, with the carboxylate O atoms linking to two GdIII ions and the N atom linking to one CuI ion. Thus, a novel three‐dimensional heterometallic coordination polymer is constructed from Gd–carboxylate subunits and Cu—Cl chains. In addition, intra‐ and intermolecular O—H...O and O—H...Cl hydrogen bonds are also observed within the three‐dimensional structure. Topologically, the framework represents an unusual 3,6‐connected (4.82)3(410.65) net.  相似文献   

4.
The solution reaction of AgNO3 and 2‐aminopyrazine (apyz) in a 1:1 ratio gives rise to the title compound, [Ag2(NO3)2(C4H5N3)2]n, (I), which possesses a chiral crystal structure. In (I), both of the crystallographically independent AgI cations are coordinated in tetrahedral geometries by two N atoms from two apyz ligands and two O atoms from nitrate anions; however, the AgI centers show two different coordination environments in which one is coordinated by two O atoms from two different symmetry‐related nitrate anions and the second is coordinated by two O atoms from a single nitrate anion. The crystal structure consists of one‐dimensional AgI–apyz chains, which are further extended by μ2‐κ2O:O nitrate anions into a two‐dimensional (4,4) sheet. N—H...O and Capyz—H...O hydrogen bonds connect neighboring sheets to form a three‐dimensional supramolecular framework.  相似文献   

5.
The title complex, [Cd2(C2H2N3)(OH)(SO4)]n, is a three‐dimensional metal–organic framework consisting of pseudo‐cubane‐like tetranuclear cadmium clusters, which are formed by four CdII atoms, two sulfate groups and two hydroxide groups. The tetranuclear cadmium clusters are connected into a layered substructure by Cd—O bonds and adjacent layers are linked by triazolate ligands into a three‐dimensional network. A photoluminescent study revealed that the complex exhibits a strong emission in the visible region which probably originates from a π–π* transition.  相似文献   

6.
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and l ‐tyrosinate (l ‐tyr) and 4,4′‐bipyridine (4,4′‐bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two l ‐tyr ligands, one N atom from a 4,4′‐bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4′‐bipy ligands, forming an undulated chiral two‐dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′‐bipy ligands by considering the ratios of the metal ion and organic components.  相似文献   

7.
The CuII ion in the title complex, [Cu(C5H10NO3)2] or [Cu(He‐ala)2] [He‐ala = N‐(2‐hydroxy­ethyl)‐β‐alaninate], resides at the inversion centre of a square bipyramid comprised of two facially arranged tridentate He‐ala ligands. Each He‐ala ligand binds to a CuII ion by forming one six‐membered β‐alaninate chelate ring in a twist conformation and one five‐membered ethanol­amine ring in an envelope conformation, with Cu—N = 2.017 (2) Å, Cu—OCOO = 1.968 (1) Å and Cu—OOH = 2.473 (2) Å. The [Cu(He‐ala)2] mol­ecules are involved in a network of O—H⋯O and N—H⋯O hydrogen bonds, forming layers parallel to the (10) plane. The layers are connected into a three‐dimensional structure by van der Waals inter­actions, so that the mol­ecular centres form pseudo‐face‐centered close packing.  相似文献   

8.
The title compound, {(C7H15N2Cl)2[Cd3Cl10]·4H2O}n, consists of 1‐chloromethyl‐1,4‐diazoniabicyclo[2.2.2]octane dications, one‐dimensional inorganic chains of {[Cd3Cl10]4−} anions and uncoordinated water molecules. Each of the two independent CdII ions, one with site symmetry 2/m and the other with site symmetry m, is octahedrally coordinated by chloride ions (two with site symmetry m and one with site symmetry 2), giving rise to novel polymeric zigzag chains of corner‐sharing Cd‐centred octahedra parallel to the c axis. The organic cations, bisected by mirror planes that contain the two N atoms, three methylene C atoms and the Cl atom, are ordered. Hydrogen bonds (O—H...Cl and O—H...O) between the water molecules (both with O atoms in a mirror plane) and the chloride anions of neighbouring chloridocadmate chains form a three‐dimensional supramolecular network.  相似文献   

9.
The title compound, {[U(C12H14O4)O2(H2O)]·H2O}n, is the first actinide complex featuring adamantanecarboxylate ligands. The metal ion possesses a pentagonal–bipyramidal UO7 coordination involving two axial oxide ligands [U—O = 1.732 (5) and 1.764 (5) Å] and five equatorial O atoms [U—O = 2.259 (5)–2.494 (4) Å] of aqua and carboxylate ligands. The latter display pseudo‐chelating and bridging coordination modes of the carboxylate groups that are responsible for the generation of the centrosymmetric discrete uranium–carboxylate [UO2(μ‐RCOO)2UO2] dimers [U...U = 5.5130 (5) Å] and their connection into one‐dimensional chains. Hydrogen bonding involving two coordinated and two solvent water molecules [O...O = 2.719 (7)–2.872 (7) Å] yields centrosymmetric (H2O)4 ensembles and provides noncovalent linkage between the coordination chains to generate a three‐dimensional network structure.  相似文献   

10.
The title compound, [Cu(C2N3)2(C12H8N2)]n, has a sheet‐like structure, built by [Cu(phen)(dca)2]n (phen is 1,10‐phenanthroline and dca is dicyan­amide) chains which are interconnected by secondary long Cu—N bonds between the chains. The Cu2+ ion is in a distorted tetragonal bipyramidal (5 + 1) coordination environment. The sheets stack into the three‐dimensional crystal structure through aromatic interactions between the coordinated phen ligands of adjacent sheets.  相似文献   

11.
The novel title hybrid isomorphous organic–inorganic mixed‐metal dichromates, [Ni(Cr2O7)(C10H8N2)2] and [Cu(Cr2O7)(C10H8N2)2], have been synthesized. A non‐centrosymmetric three‐dimensional (4,6)‐net is formed from a linear chain of vertex‐linked [Cr2O]2− and [MN4O]2+ (M = Ni and Cu) units, which in turn are linked by the planar bidentate 4,4′‐­bipyridine ligand through the four remaining vertices of the [MN4O]2+ octahedra. There are two such three‐dimensional nets that interpenetrate with inversion symmetry.  相似文献   

12.
A new inorganic–organic hybrid zinc phosphite, [Zn(HPO3)(C6H11NO2)]n, has been synthesized hydrothermally. Protonated piperidin‐1‐ium‐4‐carboxylate (PDCA) was generated in situ by hydrolysis of the piperidine‐4‐carboxamide precursor. The P atom possesses a typical PO3H pseudo‐pyramidal geometry. The crystal structure features an unusual (3,4)‐connected two‐dimensional inorganic zinc–phosphite layer, with organic PDCA ligands appended to the sheets and protruding into the interlayer region. Helical chains of opposite chirality are involved in the construction of a puckered sheet structure.  相似文献   

13.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

14.
The coordination mode of the dimethylmalonate ligand in the two title CuII complexes, {[Cu(C5H3O4)(H2O)]·H2O}n, (I), and [Cu(C5H3O4)(H2O)]n, (II), is the same, with chelated six‐membered, bis‐monodentate and bridging bonding modes. However, the coordination environment of the CuII atoms, the connectivity of their metal–organic frameworks and their hydrogen‐bonding interactions are different. Complex (I) has a perfect square‐pyramidal CuII environment with the aqua ligand in the apical position, and only one type of square grid consisting of CuII atoms linked via carboxylate bridges to three dimethylmalonate ligands, with weak hydrogen‐bond interactions within and between its two‐dimensional layers. Complex (II) has a coordination geometry that is closer to square pyramidal than trigonal bipyramidal for its CuII atoms with the aqua ligand now in the basal plane. Its two‐dimensional layer structure comprises two alternating grids, which involve two and four different dimethylmalonate anions, respectively. There are strong hydrogen bonds only within its layers.  相似文献   

15.
In the title compound, [Cu(C8H4O5)(C5H5N)2]n or [Cu(OH‐BDC)(py)2]n (where OH‐H2BDC is 5‐hydroxy­isophthalic acid and py is pyridine), the Cu atoms are coordinated by two N atoms from the pyridine ligands and by three O atoms from hydroxy­isophthalate ligands in a highly distorted triangular bipyramidal environment, with Cu—O distances in the range 1.941 (4)–2.225 (5) Å and Cu—N distances of 2.014 (6) and 2.046 (6) Å. The [Cu(OH‐BDC)]n two‐dimensional network is built up from interlocking 22‐, 15‐ and eight‐membered rings via sharing of Cu atoms and O—H⋯O hydrogen bonds. Consolidation of the packing structure is achieved by edge‐ or point‐to‐face C—H⋯π interactions and offset or slipped π–π stacking interactions.  相似文献   

16.
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2‐allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2‐allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square‐pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2‐allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one‐dimensional polymeric chains running along the a axis.  相似文献   

17.
In the title centrosymmetric binuclear complex, [Cu2(C14H11N2O3)2(H2O)2](NO3)2, the two metal centres are bridged by the phenolate O atoms of the ligand, forming a Cu2O2 quadrangle. Each Cu atom has a distorted square‐pyramidal geometry, with the basal donor atoms coming from the O,N,O′‐tridentate ligand and a symmetry‐related phenolate O atom. The more weakly bound apical donor O atom is supplied by a coordinated water molecule. When a further weak Cu...O interaction with the 4‐hydroxy O atom of a neighbouring cation is considered, the extended coordination sphere of the Cu atom can be described as distorted octahedral. This interaction leads to two‐dimensional layers, which extend parallel to the (100) direction. The two‐dimensional polymeric structure contrasts with other reported structures involving salicylaldehyde benzoylhydrazone ligands, which are usually discrete mono‐ or dinuclear Cu complexes. The nitrate anions are involved in a three‐dimensional hydrogen‐bonding network, featuring intermolecular N—H...O and O—H...O hydrogen bonds.  相似文献   

18.
In the crystal structure of the title two‐dimensional metal–organic polymeric complex, [Cd2Cl4(C8H14N2O4)(H2O)2]n, the asymmetric unit contains a crystallographically independent CdII cation, two chloride ligands, an aqua ligand and half a 2,2′‐(piperazine‐1,4‐diium‐1,4‐diyl)diacetate (H2PDA) ligand, the piperazine ring centroid of which is located on a crystallographic inversion centre. Each CdII centre is six‐coordinated in an octahedral environment by an O atom from an H2PDA ligand and an O atom from an aqua ligand in a trans disposition, and by four chloride ligands arranged in the plane perpendicular to the O—Cd—O axis. The complex forms a two‐dimensional layer polymer containing [CdCl2]n chains, which are interconnected into an extensive three‐dimensional hydrogen‐bonded network by C—H...O, C—H...Cl and O—H...O hydrogen bonds.  相似文献   

19.
The title compound, {[CuCl2(PhTz)2]·0.5PhTz}n (PhTz is 1‐­phenyl­tetrazole, C7H6N4), has a polymeric structure, with uncoordinated disordered PhTz mol­ecules in the cavities. The coordination polyhedron of the Cu atom is a highly elongated octahedron. The equatorial positions are occupied by two Cl atoms [Cu—Cl = 2.2687 (9) and 2.2803 (7) Å] and two N atoms of the PhTz ligands [Cu—N = 2.0131 (19) and 2.0317 (18) Å]. The more distant axial positions are occupied by two Cl atoms [Cu—Cl = 3.0307 (12) and 2.8768 (11) Å] that lie in the equatorial planes of two neighbouring Cu octahedra. The [CuCl2(PhTz)2] units are linked by Cu—Cl bridges into infinite chains extending parallel to the a axis. The chains are linked into two‐dimensional networks by intermolecular C—H⋯N interactions between the phenyl and tetrazole fragments, and by face‐to‐face π–π interactions between symmetry‐related phenyl rings. These two‐dimensional networks, which lie parallel to the ac plane, are connected by intermolecular π–π stacking interactions between phenyl rings, thus forming a three‐dimensional network.  相似文献   

20.
The one‐dimensional coordination polymer catena‐poly[diaqua(sulfato‐κO)copper(II)]‐μ2‐glycine‐κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two‐dimensional coordination polymer poly[(μ2‐glycine‐κ2O:O′)(μ4‐sulfato‐κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuII cation has a pentacoordinate square‐pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuII cation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuII cations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one‐dimensional polymers, extending along [001], are linked via N—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three‐dimensional framework. In the crystal structure of (II), the two‐dimensional networks are linked via bifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three‐dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three‐dimensional frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号