首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
建立了基于低共熔溶剂的涡旋辅助悬浮固化-分散液液微萃取(VA-DLLME-SFDES)结合高效液相色谱测定水样中三氯生和三氯卡班的新方法。合成了6种疏水性低共熔溶剂(DES)并测定其密度、熔点和辛醇-水分配系数(K_(OW))。选取其中低密度、合适凝固点的DES作为萃取剂,样品经涡旋辅助萃取后冷冻,萃取剂固化附着于离心管内壁,弃去水相后,融化离心进样。最佳萃取条件为:选取由薄荷醇∶十二醇(摩尔比为1∶2)制备的DES作为萃取剂,萃取剂用量为70μL,水样pH值调至5.0,涡旋时间为1 min。在最优条件下,三氯生和三氯卡班分别在0.59~100μg/L和0.26~100μg/L质量浓度范围内线性关系良好(r~2=0.999 8),方法检出限(S/N=3)为0.08~0.18μg/L,富集倍数为141~148倍,回收率为86.0%~115%,日内精密度(n=6)和日间精密度(n=6)均不大于5.4%。该方法简便、快速,且萃取相易于收集,适用于水中三氯生和三氯卡班的测定。  相似文献   

2.
研究了凝固-漂浮分散液液微萃取(SFO-DLLME)-分光光度法测定水样中痕量亚硝酸根的方法。以1-十二醇为萃取剂,乙醇为分散剂进行分散液液微萃取,离心后通过冷冻凝固操作使漂浮的萃取剂和水相分离。最佳实验条件下,方法的线性范围为2.0-280μg/L(r=0.999 9),检出限为0.34μg/L。方法已成功应用于环境水样分析,相对标准偏差在2.4%-3.3%,加标回收率在98.2%-102.4%。  相似文献   

3.
用分散液液微萃取-气相色谱/质谱法测定水样中的16种多环芳烃(PAHs)。通过实验确定最佳萃取条件为:20μL四氯化碳作萃取剂,1.0 mL乙腈作分散剂,超声萃取1 min。在优化条件下,多环芳烃的富集倍数达到216~511,方法在0.05~50μg/L范围内呈良好的线性关系,相关系数(R2)在0.9873~0.9983之间,检出限为0.0020~0.14μg/L。相对标准偏差(RSD)在3.82%~12.45%(n=6)之间。该方法成功用于实际水样中痕量多环芳烃的测定。  相似文献   

4.
建立了分散液液微萃取-高效液相色谱法测定水样中氨苯磺胺、磺胺嘧啶,磺胺二甲基嘧啶3种磺胺药物残留的检测方法。对萃取剂、分散剂的种类和体积、pH、盐浓度等影响萃取效率的因素进行了优化。在最优的萃取条件下,3种抗菌药的测定线性范围为1~1000μg/L,r≥0.9997,检出限为0.07~0.25μg/L(S/N=3)。应用于5种不同水样中磺胺类抗菌药残留的分析,目标分析物的加标回收率在82.0%~104.0%之间,相对标准偏差小于5.9%。  相似文献   

5.
建立了分散液液微萃取-柱前衍生-高效液相色谱法测定水样中双酚A的分析方法.通过交互正交试验和混合型优化实验设计对影响因素(萃取剂体积、分散剂类型及其体积、水样体积、pH值及离子强度)进行了优化.优化后的分散液液微萃取条件为:60 μL萃取剂,0.4 mL分散剂(甲醇),pH 4.0;优化后的柱前衍生化条件:0.1 mL 2.0 g/L衍生剂(对硝基苯甲酰氯)、衍生化时间30 min;方法的线性范围:0.002~0.2 mg/L(r=0.9997),检出限0.007 μg/L(S/N=3);不同浓度双酚A的萃取率为59.0%~63.0%,相对标准偏差(RSD)2.5%~9.2%(n=5);水样中双酚A的加标率为86.5%~107.1%,RSD为4.0%~11.9%(n=5),其它雌激素(雌酮、雌二醇、雌三醇和17α-乙炔基雌二醇)对双酚A的测定无干扰.本方法可以对水环境中的痕量BPA进行检测,具有操作简便、快速等优点.  相似文献   

6.
建立了一种基于超分子溶剂的涡旋辅助液液微萃取和高效液相色谱联用法检测罗丹明B和柯衣定。使用六氟异丙醇和芳樟醇制备超分子溶剂,并研究了其相行为和相率。将六氟异丙醇加入到芳樟醇水溶液中,形成超分子溶剂且密度大于水。在最优萃取条件下,六氟异丙醇/芳樟醇超分子溶剂对罗丹明B和柯衣定的线性范围为5~1000μg/L,检出限在1.3~1.5μg/L之间,定量限在4.5~5.0μg/L之间,日内、日间相对标准偏差(RSD)小于5.2%。方法用于检测环境水样和饮料中的罗丹明B和柯衣定,回收率为84.4%~109.1%, RSD在0.5%~7.6%之间。  相似文献   

7.
建立了基于新制备的天然低共熔溶剂悬浮固化(SFNADES)分散液-液微萃取结合高效液相色谱法(HPLC)检测环境样品中酮康唑、克霉唑、特比萘芬和益康唑4种抗真菌药的分析方法。选用月桂酸为氢键供体,正辛醇为氢键受体合成的天然低共熔溶剂(NADES)作为萃取剂。通过优化萃取剂的种类与摩尔比、萃取剂体积、样品体积、样品pH值与离子强度、涡旋时间及离心时间等获得了最佳萃取效率。在最优条件下,方法的线性范围为0.56~500μg/L,线性系数(r2)≥0.999 8,检出限为0.17~0.80μg/L,定量下限为0.56~2.67μg/L,富集倍数为101~114,日内和日间相对标准偏差(n=6)分别不大于4.8%和5.4%。该方法已成功用于实际水样和人尿中抗真菌药的检测,回收率为91.5%~107%。  相似文献   

8.
以苄基功能化的离子液体1-苄基-3-甲基咪唑双三氟甲烷磺酰亚胺(1-Benzyl-3-methylimidazolium bis [(trifluoromethyl)sulfonyl]imide,[BeMIM][Tf2 N])作为分散液-液微萃取的萃取剂,与高效液相色谱联用,用于环境水样中5种有机磷农药(辛硫磷、杀螟松、毒死蜱、甲拌磷和对硫磷)以及2种苯环化合物(氯化萘和蒽)的萃取与富集。并与其它离子液体([OMIM][Tf2 N])以及普通有机溶剂(CCl4和 C2 Cl4)的萃取效能进行了对比。萃取优化条件为:40μL [BeMIM][Tf2 N]作为萃取剂,1 mL 甲醇作为分散剂,离心时间5 min,样品溶液中不添加盐。在优化的条件下,本方法的线性关系良好(R2=0.9994~0.9998);对10,40和100μg/ L 不同添加浓度重复测定5次的日内和日间 RSD 分别为1.1%~4.3%和0.8%~4.8%,LOD 为0.01~1.0μg/ L (S/ N=3)。将本方法用于3种实际水样中目标分析物的测定,加标回收率和 RSD 分别为82.7%~118.3%和0.7%~5.6%。由于在咪唑环上引入了苄基基团,[BeMIM][Tf2 N]与目标分析物之间除存在疏水作用外,还存在π-π作用,故对目标物的萃取效率明显提高,富集倍数和回收率分别高达339和81.4%。测定了分析物在[BeMIM][Tf2 N]-DLLME 体系中的分配系数,对萃取机制进行初步探讨。  相似文献   

9.
建立了分散液液微萃取-高效液相色谱法测定水样中2-萘酚的分析方法。对萃取剂、分散剂的种类和体积、萃取时间、离心时间、盐浓度等影响萃取效率的因素进行了优化。在优化后的萃取条件下(30μL氯苯作为萃取剂、0.8 mL乙腈作为分散剂、萃取时间为2 min、3000 rpm离心时间为5 min、不加盐)方法的线性范围为0.2~1000μg/L(r=0.9998),检出限为0.05μg/L(S/N=3)。2-萘酚质量浓度为100μg/L时,方法的萃取率为91.4%~105.4%,相对标准偏差为4.7%(n=11)。采用该方法对4种实际水样中的2-萘酚进行了测定,加标回收率在85.5%~104.4%之间,相对标准偏差在2.3%~12%之间(n=3)。本方法可用于环境水样中的痕量2-萘酚的检测。  相似文献   

10.
以四氯乙烯作萃取剂,以四氢呋喃为分散剂对水样中4种环境激素甲草胺、乙草胺、三唑酮和三唑醇进行分散液液微萃取。提取液用气相色谱-质谱法测定。4种环境激素的质量浓度与其相应峰面积均在0.05~100μg.L-1范围内呈线性关系。甲草胺、乙草胺、三唑酮和三唑醇的检出限(3S/N)分别为0.016,0.015,0.023,0.032μg.L-1。在0.2,2.0mg.kg-1两个添加水平下进行回收试验,4种环境激素的回收率在86.8%~118%之间,测定值的相对标准偏差(n=6)在2.1%~6.2%之间。  相似文献   

11.
何东 《分析测试学报》2016,35(7):844-848
建立了测定环境水样中7种萘二酚的离子液体分散液液微萃取/高效液相色谱(IL-DLLME-HPLC)分析方法。以1-丁基-3-甲基咪唑六氟磷酸盐([C4MIM][PF6])为萃取剂,水样体积为8.0 m L,研究了萃取剂用量、水相p H值、萃取时间及盐添加量对7种萘二酚萃取效率的影响。获得最佳萃取条件为:[C4MIM][PF6]体积为150μL,水相p H值为5.0~7.0,涡旋萃取时间为3 min,氯化钠添加量为0.20 g/m L。在优化条件下,7种萘二酚在一定质量浓度范围内线性关系良好,相关系数均不小于0.997 7;方法富集倍数为57倍,方法检出限(S/N=3)为0.3~1.0μg/L;阴性环境水样中3个加标水平的平均回收率为83.5%~103%,相对标准偏差(n=6)为1.1%~3.8%。该方法快速简单、准确灵敏、环保,适用于环境水样中痕量萘二酚的富集检测。  相似文献   

12.
张建华  黄颖  陈晓秋  陈金花  李辉  陈国南 《色谱》2009,27(6):799-803
建立了简便、快速、有效的分散液-液微萃取-高效液相色谱-荧光检测(DLLME-HPLC-FLD)测定环境水样中15种多环芳烃(PAHs)的方法。重点探讨了萃取剂的种类和用量、分散剂的种类和用量以及萃取时间等对PAHs萃取效率的影响。在优化的条件下,评价了方法的可靠性。15种PAHs在0.01~10 μg/L范围内呈良好的线性关系,相关系数r均不小于0.9913,峰面积的相对标准偏差(RSD)在2.3%~4.7%之间(n=6)。在优化条件下,富集因子和萃取回收率良好,分别为674~1032和67.4%~103.2%,15种PAHs的检出限(S/N=3)在0.0003~0.002 μg/L之间。建立的方法应用于敖江水样中PAHs的检测,平均加标回收率在79.5%~92.3%之间,RSD在4.3%~6.7%范围内(n=5)。该方法适用于环境水样中痕量PAHs的分析。  相似文献   

13.
《分析试验室》2021,40(9):1035-1038
建立了基于分散液液微萃取(DLLME)-数字成像比色(DIC)法测定水样中Fe的方法。在乙酸-乙酸钠缓冲溶液中,Fe(Ⅲ)被盐酸羟胺还原成Fe(Ⅱ)后与邻菲罗啉作用生成橙红色络合物。以离子液体[C6M IM][PF6]为萃取剂,乙腈为分散剂,采用涡旋辅助的分散液液微萃取方法对该络合物进行萃取和富集后,直接通过手机比色装置对Fe进行测定。优化了手机比色装置参数和分散液液微萃取的萃取剂种类及用量、分散剂种类及用量等条件。结果表明,在最佳条件下,方法的线性范围为24~200μg/L,相关系数(r~2)为0.9973,检出限为3μg/L,加标回收率为90.0%~108.0%,相对标准偏差(RSD)为0.8%~1.8%。该方法可用于测定环境水样中痕量Fe。  相似文献   

14.
建立了水样中7种萘二酚的涡旋辅助分散液液微萃取-悬浮固化/高效液相色谱(VA-DLLMESFO/HPLC)测定方法。以乙醚-十二醇为二元微萃取剂,通过涡旋分散方式协同萃取水样中的目标化合物,采用C18色谱柱分离,HPLC测定。优化了萃取剂及用量、萃取时间、氯化钠用量等条件。最佳萃取条件为:萃取剂为100μL乙醚和50μL十二醇,氯化钠用量为0.2 g/m L,涡旋萃取3 min。在优化条件下,7种萘二酚在一定质量浓度范围内线性关系良好,相关系数均大于0.997,方法检出限(S/N=3)为1.7~6.0μg/L;3个加标水平下的平均回收率为82.1%~106.0%,日内相对标准偏差(RSD,n=5)为1.2%~4.1%;中间添加水平的日间RSD(n=5)为2.5%~5.7%。该方法前处理简单,涡旋分散大大提高了物质传质速率,增大了萃取效率,缩短了萃取时间,是一种适用于水样中萘二酚类物质富集检测的绿色方法。  相似文献   

15.
以4种室温离子液体和4种氯代溶剂为萃取剂,与高效液相色谱(HPLC)联用,对比研究了分散液-液微萃取(DLLME)对5种痕量酞酸酯类化合物(PAEs)的富集分离性能。以1-辛基-3-甲基咪唑六氟磷酸盐([OMim][PF6])和建议研究四氯化碳替代品为典型萃取溶剂优化了萃取条件。结果表明,在1.00~100μg/L范围内色谱峰面积与PAEs浓度成良好的线性关系(相关系数>0.995);对于10.0μg/L加标混合样品,平均加标回收率88.2%~103.3%,RSD在2.1%~6.8%之间(n=5),LOD在0.01~0.08μg/L范围内(S/N=3)。与四氯化碳相比,[OMim][PF6]作为DLLME的萃取溶剂对PAEs的富集倍数较高,水相盐效应影响较小。超声波辅助微萃取(USA)可在2 min达到平衡,建立的USA-DLLME-HPLC方法可用于黄河水样和城生活区污水样品中痕量PAEs的富集分离和测定。  相似文献   

16.
建立了悬浮固化分散液液微萃取(SFO-DLLME)结合高效液相色谱(HPLC)快速测定水样中6种邻苯二甲酸酯(PAEs)的分析方法。通过对影响萃取效率因素的优化,确定了最佳萃取条件:十二烷醇萃取剂20 μL、萃取温度60℃、离子强度20 g/L、萃取时间1 min。6种PAEs在2~2000 μg/L范围内呈良好的线性关系,相关系数(r)为0.9995~0.9999,检出限(S/N=3)为0.3~0.6 μg/L。对自来水、湖水、江水、污水、海水、市售塑料瓶装纯净水和矿泉水进行测定,能检测到部分PAEs。对加标水样进行回收率试验(10、100和1000 μg/L),6种PAEs的回收率为84.9%~94.5%,相对标准偏差为4.1%~6.8%(n=5)。该法环保、简单,可用于实际水样中6种PAEs的检测分析。  相似文献   

17.
孙建芝  贺晖  刘书慧 《色谱》2014,32(3):256-262
建立了分散液液微萃取(DLLME)-反相液液微萃取(RP-LLME)-扫集-胶束电动色谱富集模型,并用于红酒中五氯酚(PCP)、2,4,6-三氯酚(TCP)和2,4-二氯酚(DCP)3种氯酚的测定。实验考察了两步微萃取的萃取参数对氯酚萃取率的影响和样品分离富集的电泳条件。最佳萃取条件DLLME为:3.5 mL红酒(pH 3.0,120 g/L NaCl),300 μL正己烷(萃取剂);RP-LLME为:25 μL 0.16 mol/L NaOH(萃取剂)。最佳电泳条件:25 mmol/L NaH2PO4,100 mmol/L十二烷基硫酸钠(SDS),30%(v/v)乙腈,pH 2.3;分离电压-15 kV;样品基质为80 mmol/L NaH2PO4;压力进样20 s×20.67 kPa(3 psi)。PCP和TCP的线性范围为0.5~100 μg/L(r≥0.9910),DCP的线性范围为1.5~80 μg/L(r=0.9851)。3种分析物的检出限(S/N=3)为0.035~0.114 μg/L,加标回收率为75.2%~104.7%,相对标准偏差≤6.17%。该方法富集倍数高、灵敏度高、重现性好、分析速度快,可为不同样品基质中痕量氯酚污染物及某些弱酸性有机污染物测定提供参考。  相似文献   

18.
建立了简便、快速、有效的分散液液微萃取-高效液相色谱法测定环境水样中2,4-二氯酚的分析方法。对萃取剂、分散剂的种类和体积、萃取时间、离心时间、盐浓度等影响萃取效率的因素进行了优化。方法的线性范围为1~500μg/L(r=0.9997),相对标准偏差(RSD)为3.8%(n=6),检出限为0.19μg/L。该法适用于环境水样中的痕量2,4-二氯酚的检测。  相似文献   

19.
采用凝固-漂浮分散液液微萃取(SFO-DLLME)-高效液相色谱法测定水样中3种氯酚.以密度小于水,且凝固点为24 ℃的1-十二醇为萃取剂,甲醇为分散剂,对水样进行分散液液微萃取.将混合液离心,再通过冷冻凝固操作使漂浮的萃取剂和水相分离,萃取剂复溶后进样测定.本实验确定的最佳实验条件为:萃取剂200 μL、分散剂300 μL、1.2 g NaCl、1 mol/L H3PO4 200 μL、样品体积8.0 mL、萃取时间3 min.3种氯酚测定的线性范围为0.05~6.0 mg/L;检出限为20~38 μg/L.应用本方法分析实际水样,加标回收率在90.11%~107.7%之间;日间相对标准偏差在3.5%~4.6%之间.本方法扩展了分散液液微萃取萃取剂的选择范围,具有简便、快速、准确、环境友好等特点.  相似文献   

20.
分散液液微萃取-气相色谱法测定水样中甲基环硅氧烷   总被引:1,自引:0,他引:1  
将分散液液微萃取与气相色谱法技术相结合,建立了测定水样中3种甲基环硅氧烷残留的方法.重点探讨了萃取剂的种类和用量、分散剂的种类和用量、萃取时间及盐浓度等对样品萃取效率的影响.结果表明在优化条件下,待测物在5~100μg/L范围内线性良好(r>0.99),检出限在2~4μg/L之间,富集倍数可达165~170倍,相对标准...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号