首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network.  相似文献   

2.
5‐[4‐(1,2,4‐Triazol‐4‐yl)phenyl]‐1H‐tetrazole, C9H7N7, (I), an asymmetric heterobifunctional organic ligand containing triazole (tr) and tetrazole (tz) termini linked directly through a 1,4‐phenylene spacer, crystallizes in the polar space group Pc. The heterocyclic functions, serving as single hydrogen‐bond donor (tz) or acceptor (tr) units, afford hydrogen‐bonded zigzag chains with no crystallographic centre of inversion. In the structure of catena‐poly[[diaquacadmium(II)]bis{μ2‐5‐[4‐(1,2,4‐triazol‐4‐yl)phenyl]tetrazol‐1‐ido‐κ2N1:N1′}], [Cd(C9H6N7)2(H2O)2]n, (II), the CdII dication resides on a centre of inversion in an octahedral {N4O2} environment. In the equatorial plane, the CdII polyhedron is built up from four N atoms of two kinds, namely of trans‐coordinating tr and tz fragments [Cd—N = 2.2926 (17) and 2.3603 (18) Å], and the coordinating aqua ligands occupy the two apical sites. The metal centres are separated at a distance of 11.1006 (7) Å by means of the double‐bridging tetrazolate anion, L, forming a chain structure. The water ligands and tz fragments interact with one another, like a double hydrogen‐bond donor–acceptor synthon, leading to a hydrogen‐bonded three‐dimensional array.  相似文献   

3.
The coordination polymers catena‐poly[[[(4,4′‐bi‐1,2,4‐triazole‐κN1)bis(thiocyanato‐κN)copper(II)]‐μ‐4,4′‐bi‐1,2,4‐triazole‐κ2N1:N1′] dihydrate], {[Cu(NCS)2(C4H4N6)2]·2H2O}n, (I), and poly[tetrakis(μ‐4,4′‐bi‐1,2,4‐triazole‐κ2N1:N1′)bis(μ‐thiocyanato‐κ2N:S)tetrakis(thiocyanato‐κN)tricadmium(II)], [Cd3(NCS)6(C4H4N6)4]n, (II), exhibit chain and two‐dimensional layer structures, respectively. The differentiation of the Lewis acidic nature of CuII and CdII has an influence on the coordination modes of the triazole and thiocyanate ligands, leading to topologically different polymeric motifs. In (I), copper ions are linked by bitriazole N:N′‐bridges into zigzag chains and the tetragonal–pyramidal CuN5 environment is composed of two thiocyanate N atoms and three triazole N atoms [basal Cu—N = 1.9530 (18)–2.0390 (14) Å and apical Cu—N = 2.2637 (15) Å]. The structure of (II) contains two types of crystallographically unique CdII atoms. One type lies on an inversion center in a distorted CdN6 octahedral environment, with bitriazole ligands in the equatorial plane and terminal isothiocyanate N atoms in the axial positions. The other type lies on a general position and forms centrosymmetric binuclear [Cd2(μ‐NCS‐κ2N:S)2(NCS)2] units (tetragonal–pyramidal CdN4S coordination). N:N′‐Bridging bitriazole ligands link the Cd centers into a flat (4,4)‐network.  相似文献   

4.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

5.
5‐[(Imidazol‐1‐yl)methyl]benzene‐1,3‐dicarboxylic acid (H2L) was synthesized and the dimethylformamide‐ and dimethylacetamide‐solvated structures of its adducts with CuII, namely catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylformamide disolvate], {[Cu(C12H9N2O4)2]·2C3H7NO}n, (I), and catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylacetamide disolvate], {[Cu(C12H9N2O4)2]·2C4H9NO}n, (II), the formation of which are associated with mono‐deprotonation of H2L. The two structures are isomorphous and isometric. They consist of one‐dimensional coordination polymers of the organic ligand with CuII in a 2:1 ratio, [Cu(μ‐HL)2]n, crystallizing as the dimethylformamide (DMF) or dimethylacetamide (DMA) disolvates. The CuII cations are characterized by a coordination number of six, being located on centres of crystallographic inversion. In the polymeric chains, each CuII cation is linked to four neighbouring HL ligands, and the organic ligand is coordinated via Cu—O and Cu—N bonds to two CuII cations. In the corresponding crystal structures of (I) and (II), the coordination chains, aligned parallel to the c axis, are further interlinked by strong hydrogen bonds between the noncoordinated carboxy groups in one array and the coordinated carboxylate groups of neighbouring chains. Molecules of DMF and DMA (disordered) are accommodated at the interface between adjacent polymeric assemblies. This report provides the first structural evidence for the formation of coordination polymers with H2Lvia multiple metal–ligand bonds through both carboxylate and imidazole groups.  相似文献   

6.
The title polymeric compound, catena‐poly­[dipotassium [bis­[μ‐N‐salicyl­idene‐β‐alaninato(2−)]‐κ4O,N,O′:O′′;κ4O′′:O,N,O′‐dicopper(II)]‐di‐μ‐iso­thio­cyanato‐κ2N:S2S:N], {K[Cu(NCS)(C10H9NO3)]}n, consists of [iso­thio­cyanato(N‐salicyl­idene‐β‐alaninato)copper(II)] anions connected through the two three‐atom thio­cyanate (μ‐NCS) and the two anti,anti‐μ‐­carboxyl­ate bridges into infinite one‐dimensional polymeric anions, with coulombically interacting K+ counter‐ions with coordination number 7 constrained between the chains. The CuII atoms adopt a distorted tetragonal–bipyramidal coordination, with three donor atoms of the tridentate Schiff base and one N atom of the bridging μ‐NCS ligand in the basal plane. The first axial position is occupied by a thio­cyanate S atom of a symmetry‐related μ‐NCS ligand at an apical distance of 2.9770 (8) Å, and the second position is occupied by an O atom of a bridging carboxyl­ate group from an adjacent coordination unit at a distance of 2.639 (2) Å.  相似文献   

7.
The N‐heterocyclic ligand 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymer catena‐poly[[cadmium(II)‐bis[μ‐benzene‐1,2‐dicarboxylato‐κ4O1,O1′:O2,O2′]‐cadmium(II)‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole}‐κ2N2:N32N3:N2] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each CdII ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and two N atoms from two symmetry‐related imb ligands. Two CdII ions are connected by two benzene‐1,2‐dicarboxylate ligands to generate a binuclear [Cd2(1,2‐bdic)2] unit. The binuclear units are further connected into a one‐dimensional chain by pairs of bridging imb ligands. These one‐dimensional chains are further connected through N—H…O hydrogen bonds and π–π interactions, leading to a two‐dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairs via weak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.  相似文献   

8.
In title an­hydro­us catena‐poly­[[trans‐bis­(ethane‐1,2‐di­amine‐κ2N,N′)copper(II)]‐μ‐di­thionato‐κ2O:O′], [Cu(S2O6)(C2H8N2)2]n or [{H2N(CH2)2NH2}2Cu(O·O2SSO2·O)], successive Cu atoms are bridged by a single doubly charged di­thionate group, forming a one‐dimensional polymer with inversion centres at the metal atoms and the mid‐point of the S—S bond [Cu—O = 2.5744 (15) Å]. In title (hydrated) trans‐di­aqua­bis­(propane‐1,3‐di­amine‐κ2N,N′)copper(II) di­thionate, [Cu(C3H10N2)2(H2O)2](S2O6) or [{H2N(CH2)3NH2}2Cu(OH2)2](S2O6), both ions have imposed 2/m symmetry. The `axial' anion components are displaced by a pair of water ligands [Cu—O = 2.439 (3) Å], the shorter Cu—O distance being compensated by the lengthened Cu—N distance [2.0443 (18), cf. 2.0100 (13) and 2.0122 (16) Å].  相似文献   

9.
The CoII atom in bis(5‐aminotetrazole‐1‐acetato)tetraaquacobalt(II), [Co(C3H4N5O2)2(H2O)4], (I), is octahedrally coordinated by six O atoms from two 5‐aminotetrazole‐1‐acetate (atza) ligands and four water molecules. The molecule has a crystallographic centre of symmetry located at the CoII atom. The molecules of (I) are interlinked by hydrogen‐bond interactions, forming a two‐dimensional supramolecular network structure in the ac plane. The CdII atom in catena‐poly[[cadmium(II)]‐bis(μ‐5‐aminotetrazole‐1‐acetato], [Cd(C3H4N5O2)2]n, (II), lies on a twofold axis and is coordinated by two N atoms and four O atoms from four atza ligands to form a distorted octahedral coordination environment. The CdII centres are connected through tridentate atza bridging ligands to form a two‐dimensional layered structure extending along the ab plane, which is further linked into a three‐dimensional structure through hydrogen‐bond interactions.  相似文献   

10.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

11.
catena‐Poly[[aquabis(nitrato‐κ2O,O′)cadmium(II)]‐μ‐1,2,3,6,7,8‐hexa­hydro­cinnolino[5,4,3‐cde]cinnoline‐κN1N6], [Cd(NO3)2(C12H12N4)(H2O)]n, (I), and catena‐poly[[[bis(nitrato‐κ2O,O′)cadmium(II)]‐μ‐2,2,7,7‐tetra­methyl‐1,2,3,6,7,8‐hexahydro­cinnolino[5,4,3‐cde]cinnoline‐κN1N6] chloro­form solvate], {[Cd(NO3)2(C12H12N4)]·CHCl3}n, (II), are the first structurally examined cadmium–pyridazine coordination compounds. They possess one‐dimensional polymeric structures supported by the bidentate bridging function of the cinnolino[5,4,3‐cde]cinnoline ligands, which lie about inversion centres. The Cd atoms are seven‐coordinated in (I) and six‐coordinated in (II), involving two bidentate nitrate groups [Cd—O = 2.229 (2)–2.657 (2) Å], two N atoms of the cinnoline ligands [Cd—N = 2.252 (2)–2.425 (2) Å], and, additionally, a water O atom in (I) [Cd—O = 2.284 (2) Å]. In (I), the coordinated organic and aqua ligands form an intra­molecular O—H⋯N hydrogen bond [O⋯N = 2.730 (3) Å].  相似文献   

12.
Subtle modifications of N‐donor ligands can result in complexes with very different compositions and architectures. In the complex catena‐poly[[bis{1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole‐κN 3}copper(II)]‐μ‐benzene‐1,3‐dicarboxylato‐κ3O 1,O 1′:O 3], {[Cu(C8H4O4)(C10H9N5)2(H2O)]·2H2O}n , each CuII ion is six‐coordinated by two N atoms from two crystallographically independent 1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole (bmi) ligands, by three O atoms from two symmetry‐related benzene‐1,3‐dicarboxylate (bdic2−) ligands and by one water molecule, leading to a distorted CuN2O4 octahedral coordination environment. The CuII ions are connected by bridging bdic2− anions to generate a one‐dimensional chain. The bmi ligands coordinate to the CuII ions in monodentate modes and are pendant on opposite sides of the main chain. In the crystal, the chains are linked by O—H…O and O—H…N hydrogen bonds, as well as by π–π interactions, into a three‐dimensional network. A thermogravimetric analysis was carried out and the fluorescence behaviour of the complex was also investigated.  相似文献   

13.
The structure of the title compound, cis‐[PtCl2(C2H5N5)2], was analysed using in‐house X‐ray powder diffraction data at room temperature. The structure was solved by direct methods and refined using Rietveld analysis. A slightly distorted square‐planar coordination geometry is formed around the Pt atom by two Cl atoms and two ring N atoms of the 2‐methyl‐2H‐tetrazol‐5‐amine ligands, which are in a cis configuration. The planes of the tetrazole rings are inclined at 79.7 (7) and 73.8 (6)° with respect to the coordination plane, with their substituents oriented in such a way that the complex as a whole has approximate C2 symmetry. Intermolecular N—H...Cl hydrogen bonds mediate the formation of a three‐dimensional supramolecular network.  相似文献   

14.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

15.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

16.
4,4′‐(p‐Phenylene)bipyridazine, C14H10N4, (I), and the coordination compounds catena‐poly[[dibromidocopper(II)]‐μ‐4,4′‐(p‐phenylene)bipyridazine‐κ2N2:N2′], [CuBr2(C14H10N4)]n, (II), and catena‐poly[[[tetrakis(μ‐acetato‐κ2O:O′)dicopper(II)]‐μ‐4,4′‐(p‐phenylene)bipyridazine‐κ2N1:N1′] chloroform disolvate], {[Cu2(C2H3O2)4(C14H10N4)]·2CHCl3}n, (III), contain a new extended bitopic ligand. The combination of the p‐phenylene spacer and the electron‐deficient pyridazine rings precludes C—H...π interactions between the lengthy aromatic molecules, which could be suited for the synthesis of open‐framework coordination polymers. In (I), the molecules are situated across a center of inversion and display a set of very weak intermolecular C—H...N hydrogen bonds [3.399 (3) and 3.608 (2) Å]. In (II) and (III), the ligand molecules are situated across a center of inversion and act as N2,N2′‐bidentate [in (II)] and N1,N1′‐bidentate [in (III)] long‐distance bridges between the metal ions, leading to the formation of coordination chains [Cu—N = 2.005 (3) Å in (II) and 2.199 (2) Å in (III)]. In (II), the copper ion lies on a center of inversion and adopts CuN2Br4 (4+2)‐coordination involving two long axial Cu—Br bonds [3.2421 (4) Å]. In (III), the copper ion has a tetragonal pyramidal CuO4N environment. The uncoordinated pyridazine N atom and two acetate O atoms provide a multiple acceptor site for accommodation of a chloroform solvent molecule by trifurcated hydrogen bonding [C—H...O(N) = 3.298 (5)–3.541 (4) Å].  相似文献   

17.
Many factors, such as temperature, solvent, the central metal atom and the type of coligands, may affect the nature of metal–organic frameworks (MOFs) and the framework formation in the self‐assembly process, which results in the complexity of these compounds and the uncertainty of their structures. Two new isomeric ZnII metal–organic frameworks (MOFs) based on mixed ligands, namely, poly[[μ‐1,5‐bis(2‐methyl‐1H‐imidazol‐1‐yl)pentane‐κ2N 3:N 3′](μ‐5‐methylisophthalato‐κ2O 1:O 3)zinc(II)], [Zn(C9H6O4)(C13H20N4)]n , (I), and poly[[μ‐1,5‐bis(2‐methyl‐1H‐imidazol‐1‐yl)pentane‐κ2N 3:N 3′](μ3‐5‐methylisophthalato‐κ3O 1:O 1′:O 3)(μ3‐5‐methylisophthalato‐κ4O 1:O 1′:O 3,O 3′)dizinc(II)], [Zn2(C9H6O4)2(C13H20N4)]n , (II), have been synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, elemental analysis and thermogravimetric analysis. Complex (I) displays a two‐dimensional layer net, while complex (II) exhibits a twofold interpenetrating three‐dimensional framework. Both complexes show high stability and good fluorescence in the solid state at room temperature.  相似文献   

18.
In the crystals of bis(pyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C5H5N)2], (I), the dinuclear CuII complexes have cage structures with Cu?Cu distances of 2.632 (1) and 2.635 (1) Å. In the crystals of bis(2‐­methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (II), bis­(3‐methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (III), and bis(quinoline‐N)­tetrakis(μ‐­trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C9H7N)2], (IV), the centrosymmetric dinuclear CuII complexes have a cage structure with Cu?Cu distances of 2.664 (1), 2.638 (3) and 2.665 (1) Å, respectively. In the crystals of catena‐poly­[tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II)], [Cu2(C5H11O2Si)4]n, (V), the dinuclear CuII units of a cage structure are linked by the cyclic Cu—O bonds at the apical positions to form a linear chain by use of a glide translation.  相似文献   

19.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

20.
The bifunctional pyridine‐2,3‐dicarboxylic acid (H2pdc) ligand has one N atom and four O atoms, which could bind more than one AgI centre with diverse binding modes. A novel infinite one‐dimensional AgI coordination polymer, namely catena‐poly[[silver(I)‐(μ2‐pyridine‐2,3‐dicarboxylato‐κ2N :O 3)‐silver(I)‐tris(μ2‐5‐methyl‐1,3,4‐thiodiazol‐2‐amine‐κ2N :N ′)] monohydrate ethanol monosolvate], {[Ag2(C7H3NO4)(C3H5N3S)3]·H2O·C2H5OH}n , has been synthesized using H2pdc and 5‐methyl‐1,3,4‐thiadiazol‐2‐amine (tda), and characterized by single‐crystal X‐ray diffraction. One AgI atom is located in a four‐coordinated AgN4 tetrahedral geometry and the other AgI atom is in a tetrahedral AgN3O geometry. A dinuclear AgI cluster formed by three tda ligands with a paddelwheel configuration is bridged by the dianionic pdc2− ligand into a one‐dimensional coordination polymer. Interchain N—H…O hydrogen bonds extend the one‐dimensional chains into an undulating two‐dimensional sheet. The sheets are further packed into a three‐dimensional supramolecular framework by interchain N—H…O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号