首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of polypyridine ruthenium complexes of the general formula {Ru(Rph‐tpy)[dppz(COOH)]Cl} PF6 with R = Br ( 1 ), Cl ( 2 ), NO2 ( 3 ) where Rph‐tpy is 4′‐(4‐Rphenyl‐2,2′:6′,2″‐terpyridine and dppz(COOH) is dipyrido[3,2‐a:2′,3′‐c]phenazine‐2‐carboxylic acid were prepared and characterized. These complexes display intense metal‐to‐ligand charge‐transfer (MLCT) bands centered about 500 nm. The effect of pH on the absorption spectra of these complexes consisting of protonatable ligands has been investigated in water solution by spectrophotometric titration. The electrochemistry shows oxidation potentials for the Ru(II)–Ru(III) couple at +0.881 ( 1 ), +0.907 ( 2 ) and +0.447 V ( 3 ), respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The synthesis and characterization of Ru (II) terpyridine complexes derived from 4′ functionalized 2,2′:6′,2″‐terpyridine (tpy) ligands are reported. The heteroleptic complexes comprise the synthesized ligands 4′‐(2‐thienyl)‐ 2,2′:6′,2″‐terpyridine) or (4′‐(3,4‐dimethoxyphenyl)‐2,2′:6′,2″‐terpyridine and (dimethyl 5‐(pyrimidin‐5‐yl)isophthalate). The new complexes [Ru(4′‐(2‐thienyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)Cl2] ( 9 ), [Ru(4′‐(3,4‐dimethoxyphenyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)Cl2] ( 10 ), and [Ru(4′‐(2‐thienyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)(NCS)2] ( 11 ) were characterized by 1H‐ and 13C‐NMR spectroscopy, C, H, N, and S elemental analysis, UPLC‐ESI‐MS, TGA, FT‐IR, and UV‐Vis spectroscopy. The biological activities of the synthesized ligands and their Ru (II) complexes as anti‐inflammatory, antimicrobial, and anticancer agents were evaluated. Furthermore, the toxicity of the synthesized compounds was studied and compared with the standard drugs, namely, diclofenac potassium and ibuprofen, using hemolysis assay. The results indicated that the ligands and the complex 9 possess superior anti‐inflammatory activities inhibiting albumin denaturation (89.88–100%) compared with the standard drugs (51.5–88.37%) at a concentration of 500 μg g?1. These activities were related to the presence of the chelating N‐atoms in the ligands and the exchangeable chloro‐ groups in the complex. Moreover, the chloro‐ and thiophene groups in complex 9 produce a higher anticancer activity compared with its isothiocyanate derivative in the complex 11 and the 3,4‐dimethoxyphenyl moiety in complex 10 . Considering the toxicity results, the synthesized ligands are nontoxic or far less toxic compared with the standard drugs and the metal complexes. Therefore, these newly synthesized compounds are promising anti‐inflammatory agents in addition to their moderate unique broad antimicrobial activity.  相似文献   

3.
A series of organonickel complexes [(R′terpy)Ni(aryl)]X (R′terpy = derivatives of 2,2′;6′,6″‐terpyridine; R′ = 4‐H, 4‐Cl, 4‐Tol and 4,4′,4″‐tBu3; aryl = 2,6‐dimethylphenyl = Xyl or 2,4,6‐trimethylphenyl = Mes; X = Br or PF6) have been prepared and characterized. The crystal structures exhibit a number of intermolecular H bond type interactions, but the structure determining force seems to be the packing of the aryl co‐ligands. The molecules reveal rather undistorted square planar coordination with a N3C ligand set, the central Ni–N bond being remarkably short, despite the expected strong trans influence of the aryl co‐ligands. The long‐wavelength absorptions were assigned to charge transfer transitions. No emission is observed at ambient temperature in the solid and in solution and at low temperature in glasses.  相似文献   

4.
A new mercury(II) complex [Hg(Hpyterpy)(SCN)2]2(MeSO4)2 was prepared from the reaction of 4′-(4-pyridyl)-2,2′:6′,2″- terpyridine (pyterpy), as a polypyridyl ligand, with mercury(II) thiocyanate. The compound was characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy and its structure was determined by X-ray single-crystal diffraction. The thermal stability of compound was studied by thermogravimetric (TG) and differential thermal analyses (DTA).  相似文献   

5.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

6.
Four heterodimetallic complexes [Ru(Fcdpb)(L)](PF6) (Fcdpb=2‐deprotonated form of 1,3‐di(2‐pyridyl)‐5‐ferrocenylbenzene; L=2,6‐bis‐(N‐methylbenzimidazolyl)‐pyridine (Mebip), 2,2′:6′,2′′‐terpyridine (tpy), 4‐nitro‐2,2′:6′,2′′‐terpyridine (NO2tpy), and trimethyl‐4,4′,4′′‐tricarboxylate‐2,2′:6′,2′′‐terpyridine (Me3tctpy)) have been prepared. The electrochemical and spectroelectrochemical properties of these complexes have been examined in CH2Cl2, CH3NO2, CH3CN, and acetone. These complexes display two consecutive redox couples owing to the stepwise oxidation of the ferrocene (Fc) and ruthenium units, respectively. The potential difference, ΔE1/2 (E1/2(RuII/III)?E1/2(Fc0/+)), decreased slightly with increasing solvent donocity. The mixed‐valent states of these complexes have been generated by electrolysis and the resulting intervalence charge‐transfer (IVCT) bands have been analyzed by Hush theory. Good linear relationships exist between the energy of the IVCT band, Eop, and ΔE1/2 of four mixed‐valent complexes in a given solvent.  相似文献   

7.
The reaction between [PtCl(terpy)]·2H2O (terpy is 2,2′:6′,2′′‐terpyridine) and pyrazole in the presence of two equivalents of AgClO4 in nitromethane yields the title compound, [Pt(C3H4N2)(C15H11N3)](ClO4)2·CH3NO2, as a yellow crystalline solid. Single‐crystal X‐ray diffraction shows that the dicationic platinum(II) chelate is square planar with the terpyridine ligand occupying three sites and the pyrazole ligand occupying the fourth. The torsion angle subtended by the pyrazole ring relative to the terpyridine chelate is 62.4 (6)°. Density functional theory calculations at the LANL2DZ/PBE1PBE level of theory show that in vacuo the lowest‐energy conformation has the pyrazole ligand in an orientation perpendicular to the terpyridine ligand (i.e. 90°). Seemingly, the stability gained by the formation of hydrogen bonds between the pyrazole NH group and the perchlorate anion in the solid‐state structure is sufficient for the chelate to adopt a higher‐energy conformation.  相似文献   

8.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

9.
A series of RuII polypyridyl complexes of the structural design [RuII(R?tpy)(NN)(CH3CN)]2+ (R?tpy=2,2′:6′,2′′‐terpyridine (R=H) or 4,4′,4′′‐tri‐tert‐butyl‐2,2′:6′,2′′‐terpyridine (R=tBu); NN=2,2′‐bipyridine with methyl substituents in various positions) have been synthesized and analyzed for their ability to function as electrocatalysts for the reduction of CO2 to CO. Detailed electrochemical analyses establish how substitutions at different ring positions of the bipyridine and terpyridine ligands can have profound electronic and, even more importantly, steric effects that determine the complexes’ reactivities. Whereas electron‐donating groups para to the heteroatoms exhibit the expected electronic effect, with an increase in turnover frequencies at increased overpotential, the introduction of a methyl group at the ortho position of NN imposes drastic steric effects. Two complexes, [RuII(tpy)(6‐mbpy)(CH3CN)]2+ (trans‐[ 3 ]2+; 6‐mbpy=6‐methyl‐2,2′‐bipyridine) and [RuII(tBu?tpy)(6‐mbpy)(CH3CN)]2+ (trans‐[ 4 ]2+), in which the methyl group of the 6‐mbpy ligand is trans to the CH3CN ligand, show electrocatalytic CO2 reduction at a previously unreactive oxidation state of the complex. This low overpotential pathway follows an ECE mechanism (electron transfer–chemical reaction–electron transfer), and is a direct result of steric interactions that facilitate CH3CN ligand dissociation, CO2 coordination, and ultimately catalytic turnover at the first reduction potential of the complexes. All experimental observations are rigorously corroborated by DFT calculations.  相似文献   

10.
The single‐crystal X‐ray structures of dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylate, C14H12N2O4, and the copper(I) coordination complex bis(dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylato‐κ2N,N′)copper(I) tetrafluoroborate, [Cu(C14H12N2O4)2]BF4, are reported. The uncoordinated ligand crystallizes across an inversion centre and adopts the anticipated anti pyridyl arrangement with coplanar pyridyl rings. In contrast, upon coordination of copper(I), the ligand adopts an arrangement of pyridyl donors facilitating chelating metal coordination and an increased inter‐pyridyl twisting within each ligand. The distortion of each ligand contrasts with comparable copper(I) complexes of unfunctionalized 2,2′‐bipyridine.  相似文献   

11.
The title compound, [4′‐(4‐bromophenyl)‐2,2′:6′,2′′‐terpyridine]chlorido(trifluoromethanesulfonato)copper(II), [Cu(CF3O3S)Cl(C21H14BrN3)], is a new copper complex containing a polypyridyl‐based ligand. The CuII centre is five‐coordinated in a square‐pyramidal manner by one substituted 2,2′:6′,2′′‐terpyridine ligand, one chloride ligand and a coordinated trifluoromethanesulfonate anion. The Cu—N bond lengths differ by 0.1 Å for the peripheral and central pyridine rings [2.032 (2) (mean) and 1.9345 (15) Å, respectively]. The presence of the trifluoromethanesulfonate anion coordinated to the metal centre allows Br...F halogen–halogen interactions, giving rise to the formation of a dimer about an inversion centre. This work also demonstrates that the rigidity of the ligand allows the formation of other types of nonclassical interactions (C—H...Cl and C—H...O), yielding a three‐dimensional network.  相似文献   

12.
(Oligopyridine)ruthenium(II) complexes have been widely used in dye sensitized solar cells and other sophisticated optical devices due to their outstanding photophysical properties and their chemical stability. Herein, we describe the longitudinal extension of our previously reported bis(terpyridine)ruthenium(II) amino acid [Ru(tpy–NH2)(tpy–COOH)]2+ (tpy = 4′‐substituted 2,2′:6′,2″‐terpyridine) by insertion of para‐phenylene spacers –C6H4– between the terpyridine and the functional groups. The influence of the para‐phenylene spacer on the absorption and emission properties is investigated using UV/Vis absorption and emission spectroscopy and is discussed within a qualitative molecular orbital picture.  相似文献   

13.
By two different routes, 4,4′′′′‐azobis[2,2′: 6′,2″‐terpyridine] was synthesized. Its ruthenium complexes show interesting metal‐to‐ligand charge transfer (MLCT) absorption maxima in the electronic spectra. They represent the first ruthenium complexes of terpyridine units to give blue solutions.  相似文献   

14.
Two new MnII and FeII complexes with 4′-(4-pyridyl)-2,2′ : 6′,2″-terpyridine (pyterpy), [Mn(pyterpy)(MeOH)2(OAc)](ClO4) (1) and [Fe(pyterpy)2](SCN)2 · MeOH (2) have been synthesized and characterized by CHN elemental analysis, IR spectroscopy, and structurally analyzed by single-crystal X-ray diffraction. The thermal stabilities of these compounds were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The potentially tetradentate pyterpy ligand is a tridentate donor to both Mn(II) and Fe(II). The non-coordinated pyridyl interacts via O–H ··· N and C–H ··· N hydrogen bonds with adjacent molecules in 1 and 2, respectively, to form inversion symmetric dimers. Compound 1 is further extended into infinite hydrogen bonded chains via pairs of O–H ··· Oacetate hydrogen bonds.  相似文献   

15.
A novel polythiophene bearing a pendant terpyridine moiety has been synthesized by electrochemical polymerization of a new thiophene monomer, namely 4′‐(2,2′:5′,2″‐terthien‐3′‐ethynyl)‐2,2′:6′,2″‐terpyridine (TAT). The insertion of a conjugated ethynyl spacer between the terthiophene and the terpyridine fragments provides for an effective extension of the delocalization of electrons within the structural unit and the polymer as a whole. The synthesis and characterization of the relevant monomer, the electrosynthesis of the corresponding polymer and its electrochemical, UV–visible spectroelectrochemical and IR characterization are described. Finally, a comparison between the electrochemical, spectroscopic, and spectroelectrochemical properties of PTAT and the analogue, saturated‐spacer PTTT (TTT = 4′‐[(2,2′:5′,2″‐terthien‐3′‐yl)methoxy]‐2,2′:6′,2″‐terpyridine) polymer is discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Porous coordination polymers (CPs) with partially uncoordinated pyridyl rings based on rationally designed polypyridyl linkers are appealing from the point of view of their application as nucleophilic catalysts. A D2d‐symmetric tetradentate organic linker L , that is, 2,2′,6,6′‐tetramethoxy‐3,3′,5,5′‐tetrakis(4‐pyridyl)biphenyl, was designed and synthesized for metal‐assisted self‐assembly aimed at porous CPs. Depending on the nature of the metal ion and the counter anion, the ligand L is found to function as a 3‐ or 4‐connecting building block leading to porous CPs of diverse topologies. The reaction of L with Zn(NO3)2 and Cd(NO3)2 yields porous 2 D CPs of “ fes ” topology, in which the tetrapyridyl linker L serves as a 3‐connecting unit with its free pyridyl rings well exposed into the pores. The functional utility of these porous CPs containing uncoordinated pyridyl rings is demonstrated by employing them as efficient heterogeneous nucleophilic catalysts for acetylation of a number of phenols with varying electronic properties and reactivities.  相似文献   

17.
First examples of transition metal complexes with HpicOH [Cu(picOH)2(H2O)2] ( 1 ), [Cu(picO)(2,2′‐bpy)]·2H2O ( 2 ), [Cu(picO)(4,4′‐bpy)0.5(H2O)]n ( 3 ), and [Cu(picO)(bpe)0.5(H2O)]n ( 4 ) (HpicOH = 6‐hydroxy‐picolinic acid; 2,2′‐bpy = 2,2′‐bipyridine; 4,4′‐bpy = 4,4′‐bipyridine; bpe = 1,2‐bis(4‐pyridyl)ethane) have been synthesized and characterized by single‐crystal X‐ray diffraction. The results show that HpicOH ligand can be in the enol or ketonic form, and adopts different coordination modes under different pH value of the reaction mixture. In complex 1 , HpicOH ligand is in the enol form and adopts a bidentate mode. While in complexes 2 – 4 , as the pH rises, HpicOH ligand becomes in the ketonic form and adopts a tridentate mode. The coordination modes in complexes 1 – 4 have not been reported before. Because of the introduction of the terminal ligands 2,2′‐bpy, complex 2 is of binuclear species; whereas in complexes 3 and 4 , picO ligands together with bridging ligands 4,4′‐bpy and bpe connect CuII ions to form 2D nets with (123)2(12)3 topology.  相似文献   

18.
Two coordination polymers, {[Zn2(L)(bpy)] · 2H2O}n ( 1 ) and [Zn2(L)(bpe)]n ( 2 ) [H4L = terphenyl‐2,2′,4,4′‐tetracarboxylic acid, bpy = 4,4′‐bipyridine, and bpe = 1,2‐bis(4‐pyridyl)ethane], were hydrothermally synthesized under similar conditions and characterized by elemental analysis, IR spectroscopy, TGA, and single‐crystal X‐ray diffraction analysis. Compound 1 has a 3D framework containing Zn–O–C–O–Zn 1D chains. Compound 2 exhibits a 3D framework, which features tubular channels. The channels are occupied by bpe molecules. The differences in the structures demonstrate that the auxiliary dipyridyl‐containing ligand has a significant effect on the construction of the final framework. Additionally, the fluorescent properties of the two compounds were also studied in the solid state at room temperature.  相似文献   

19.
Dyad molecules containing the 2,3,5,6‐tetrakis(2‐pyridyl)pyrazine (tppz) ligand with general formula [(tpy)Ru(μ‐tppz)Ru(X)(L‐L)]n+ (X=Cl, CF3COO, or H2O; L‐L=2,2′‐bipyridine (bpy) or 3,5‐bis(2‐pyridyl)pyrazole (Hbpp); tpy=2,2′:6′,2“‐terpyridine) have been prepared, purified, and isolated. The complexes have been characterized by analytical and spectroscopic techniques and by X‐ray diffraction analysis for two of them. Additionally, full electrochemical characterization based on cyclic voltammetry, differential pulse voltammetry, and square wave voltammetry has been also performed. The pH dependence of the redox couples for the aqua complexes have also been studied and their corresponding Pourbaix diagrams drawn. Furthermore, their capacity to catalytically oxidize organic substrates, such as alcohols, alkenes, and sulfides, has been carried out chemically, electrochemically, and photochemically. Finally, their capacity to behave as water oxidation catalysts has also been tested.  相似文献   

20.
Seven complexes, [Ln(ctpy)(NO3)2]n and M(ctpy)2 · 4H2O [Ln = Gd ( 1 ), Dy ( 2 ), Er ( 3 ); M = Co ( 4 ), Ni ( 5 ), Cu ( 6 ), Zn ( 7 )] with the ligand 2, 2′:6′,2′′‐terpyridine‐4′‐carboxylic acid (Hctpy) were hydrothermally synthesized. X‐ray diffractional analysis reveals that the isomorphous compounds 1 – 3 adopt one‐dimensional chain‐like structures, whereas 4 – 7 are isomorphic monomers. Luminescence spectroscopy measurements indicates that compound 7 exhibits photoluminescence in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号