首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Icosacerium nonadecamagnesium henoctacontazinc, Ce20Mg19Zn81, synthesized by fritting of the pure elements with subsequent arc melting, crystallizes with an unusually large cubic unit cell [space group F3m, a = 21.1979 (8) Å] and represents a new structure type among the technologically important family of ternary rare earth–transition metal–magnesium intermetallics. The majority of atoms (two Ce and five Zn) display .3m site symmetry, two Ce and one Mg atom occupy three 2.mm positions, one Mg and one Zn have 3m site symmetry, one Mg and three Zn atoms sit in ..m positions, and one Zn atom is in a general position. The Ce20Mg19Zn81 structure can be described using the geometric concept of nested polyhedral units, by which it consists of four different polyhedral units, viz.A (Zn+Zn4+Zn4+Zn12+Ce6), B (Mg+Zn12+Ce4+Zn24+Ce4), C (Zn4+Zn12+Mg6) and D (Zn4+Zn4+Mg12+Ce6), with the outer construction unit being an octahedron or tetrahedron. All interatomic distances in the structure indicate metallic‐type bonding.  相似文献   

2.
Ternary tetralanthanum trimagnesium tricontazinc, La4.27Mg2.89Zn30, crystallizes as a new structure type. It belongs to the structural family that may be derived from the hexagonal CaCu5 and Th2Ni17 structure types by combination of internal deformation and multiple substitution. The triangular 36 and hexagonal 63 nets are alternately stacked with Kagomé 3636 nets. The atoms with the largest radius (La) are enclosed in 18‐vertex polyhedra (distorted pseudo‐Frank–Kasper polyhedra). The coordination polyhedra of the two Mg atoms are bicapped and monocapped hexagonal antiprisms, with coordination numbers of 14 and 13, respectively. For all the Zn atoms, the typical icosahedral coordination is observed. In the direction of the six‐ and threefold axes, strong positional disorder is observed as a result of partial substitutions of La atoms by pairs of Mg atoms.  相似文献   

3.
The quaternary indides LaTIn3Mg (T = Rh and Ir) and CeIrIn3Mg were prepared from the elements in sealed tantalum ampoules in an induction furnace. The samples were characterized by X-ray powder and single crystal data: LaCoAl4 type, Pmma, Z = 2, a = 830.5(1), b = 436.1(1), c = 745.1(1) pm, wR2 = 0.038, 467 F 2 values for LaRhIn3.075Mg0.925, a = 832.9(1), b = 436.5(1), c = 746.9(1) pm, wR2 = 0.077, 471 F 2 values for LaIrIn3.091Mg0.909, and a = 832.2(1), b = 434.1(1), c = 743.9(1) pm, wR2 = 0.066, 465 F 2 values for CeIrIn3.07Mg0.93 with 25 variables for each refinement. The transition metal, indium, and magnesium atoms build up three-dimensional [TIn3Mg] networks which leave pentagonal prismatic voids for the lanthanum and cerium atoms. The transition metal atoms have tricapped trigonal prismatic coordination and the magnesium atoms fill distorted square prisms. All three crystals revealed a small degree of Mg/In mixing on the latter site.  相似文献   

4.
The crystal structures of Mg11Rh18B8 and Mg3Rh5B3 have been investigated by using single‐crystal X‐ray diffraction. Mg11Rh18B8: space group P4/mbm; a=17.9949(7), c=2.9271(1) Å; Z=2. Mg3Rh5B3: space group Pmma; a=8.450(2), b=2.8644(6), c=11.602(2) Å; Z=2. Both crystal structures are characterized by trigonal prismatic coordination of the boron atoms by rhodium atoms. The [BRh6] trigonal prisms form arrangements with different connectivity patterns. Analysis of the chemical bonding by means of the electron‐localizability/electron‐density approach reveals covalent B? Rh interactions in these arrangements and the formation of B? Rh polyanions. The magnesium atoms that are located inside the polyanions interact ionically with their environment, whereas, in the structure parts, which are mainly formed by Mg and Rh atoms, multicenter (metallic) interactions are observed. Diamagnetic behavior and metallic electron transport of the Mg11Rh18B8 and Mg3Rh5B3 phases are in agreement with the bonding picture and the band structure.  相似文献   

5.
A new metal-organic coordination polymer [Zn2(C2O4)2(C3N2H4)2] n (1) has been hydrothermally synthesized with ZnCl2·2H2O, oxalic acid and imidazole. The compound has a 2D network, consisting of infinite zinc(II) oxalate chains connected to each other by three-coordinate oxygen atoms. Within the chains, the zinc atoms are each octahedrally coordinated by one nitrogen atom from imidazole and five oxygen atoms from oxalate groups. Furthermore, there are two coordination modes of oxalate to zinc ions: chelate bis-bidentate and chelate/bridging bis-bidentate in compound 1, and the latter is rare among related compounds. Crystal data: monoclinic, P2(1)/c, a?=?8.4310(17), b?=?9.4060(19), c?=?8.2790(17)?Å, β?=?93.15(3)°, V?=?655.5(2)?Å3, Z?=?2, R 1?=?0.0322, wR 2?=?0.0850.  相似文献   

6.
The structures of the chelate Zn(PDTC)2 and its dimeric form Zn2(PDTC)4 are investigated theoretically at B3LYP/cc-pVDZ level. The natural bond orbital (NBO) analysis has been performed to explore the metal–ligand coordination of these chelates. In Zn(PDTC)2, the sulfur atoms mainly use 3p sub-shells to coordinate with mixed (4s + 4p x  + 4p y  + 4p z ) orbital of zinc having sp 3 hybridization. In Zn2(PDTC)4, each zinc atom coordinates with one terminal and two bridging PDTC ligands. The contribution of bridging sulfur atoms in chelation is much more than terminal sulfurs. The bridging sulfur atoms use 3s and 3p sub-shells to coordinate with 4s and 4p sub-shells of metal center zinc. The charge transfer interactions between sulfur and metal center involving 4d, 5s, and 5p sub-shells of zinc are much feeble compared to those involving 4s and 4p sub-shells of zinc.  相似文献   

7.
The novel title ZnII coordination polymer, poly[bis(μ‐6‐thioxo‐1,6‐dihydropyridine‐3‐carboxylato‐κ2S:O)zinc(II)], [Zn(C6H4NO2S)2]n, consists of two crystallographically independent zinc centers and two 6‐mercaptonicotinate (Hmna) ligands. Each ZnII atom is four‐coordinated and lies at the center of a distorted tetrahedral ZnS2O2 coordination polyhedron, bridged by four Hmna ligands to form a two‐dimensional (4,4)‐network. Each Hmna ion acts as a bridging bidentate ligand, coordinating to two ZnII atoms through the S atom and a carboxyl O atom. The metal centers reside on twofold rotation axes. The coordination mode of the S atoms and N—H...O hydrogen‐bonding interactions between the protonated N atoms and the uncoordinated carboxyl O atoms give the extended structure a wavelike form.  相似文献   

8.
Motifs of Closest Packings: The Compounds Zn3(PS4)2 and LiZnPS4 The crystal structure of Zn3(PS4)2 was determined by single crystal X‐ray methods. The compound crystallizes tetragonally (Pn2; a = 7.823(1), c = 9.053(1)Å; Z = 2) with a new structure type built up by corner‐sharing ZnS4 tetrahedra, which form two‐dimensional layers. Between them the P atoms are coordinated likewise tetrahedrally by sulfur. The PS4 tetrahedra are arranged according to the motif of the cubic closest packing with zinc in three quarters of the tetrahedral voids. LiZnPS4 (I4¯; a = 5.738(1), c = 8.914(1)Å; Z = 2) was synthesized by heating the elements at 400 °C. In comparison with Zn3(PS4)2 one Zn atom is replaced by two Li atoms. The metal atoms are located in the centres of the sulfur tetrahedra in such a way that the unit cell volume is only about half that of the zinc compound. In this packing of the PS4 units all the tetrahedral voids are occupied by lithium and zinc atoms. Chemical bonding in LiZnPS4 is discussed by means of the electron localization function ELF.  相似文献   

9.
Zn11Rh18B8 and Zn10MRh18B8 with M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Si, Ge and Sn are obtained by reaction of the elemental components in sealed tantalum tubes at 1500 K. They crystallize tetragonally with Z = 2 in the spacegroup P4/mbm with lattice constants a = 1771.2(2) pm, c = 286.40(4) pm for Zn11Rh18B8 and in the range a = 1767.65(9) pm, c = 285.96(3) pm (Zn10NiRh18B8) to a = 1774.04(9) pm, c = 286.79(2) pm (Zn10SnRh18B8) for the quaternary compounds. According to powder photographs all compounds are isotypic. Struture determinations based on single crystal X-ray data were performed with Zn11Rh18B8, Zn10FeRh18B8 and Zn10NiRh18B8. The structure of Zn11Rh18B8 is related to the Ti3Co5B2 type. Along the short axis planar nets of rhodium atoms composed of triangles, squares, pentagons and elongated hexagons alternate with layers containing the boron and zinc atoms. The rhodium atoms form trigonal prisms centered by boron atoms, two kinds of tetragonal and pentagonal prisms centered by zinc atoms and elongated hexagonal prisms containing pairs of zinc atoms. In the quaternary compounds Zn10MRh18B8 the zinc atoms in one sort of tetragonal prisms are replaced by M atoms.  相似文献   

10.
The title compounds were prepared by reaction of the elements at elevated temperatures in sealed silica tubes. Single crystals of RhZn and RhZn13 were obtained by slow cooling of samples with a high zinc content after dissolving the zinc‐rich matrix in hydrochloric acid. Their crystal structures were determined from single‐crystal X‐ray diffractometer data. RhZn has a CsCl type structure: Pm3m, a = 300.9(1) pm. RhZn13 has a CoZn13 type structure: C2/m, a = 1090.8(2) pm, b = 753.7(2) pm, c = 512.7(1) pm, β = 101.02(2)°. The structure of Rh2Zn11 is isotypic with Cu5Zn8, the γ‐brass structure. It was refined from X‐ray diffractometer powder data: I43m, a = 909.1(1) pm. In these structures all atoms have high coordination numbers. The structure of RhZn13 contains relatively large unoccupied voids. It is suggested that they accommodate nonbonding electrons. Electrical conductivity measurements of Rh2Zn11 and RhZn13 indicate metallic behavior, however, with an unexpectedly high resistivity for Rh2Zn11. The expected Pauli paramagnetism of these compounds is overcompensated by the core diamagnetism, suggesting a low density of states at the Fermi level especially for Rh2Zn11. This correlates with the high electrical resistivity of this compound.  相似文献   

11.
A novel Zn(II) coordination polymer [Zn2(phen)2]L4·3H2O(1) is synthesized by the reaction of Zn(NO3)2, Phen(1,10-phenanthroline), and L(2-mercaptonicotinic acid) at room temperature and structurally characterized by X-ray single crystal diffraction along with IR spectra and elemental analysis. Title complex 1 belongs to the triclinic system with the space group (P-1), a = 10.9373(11) Å, b = 11.6201(12) Å, c = 13.1371(14) Å; α = 116.100(1)°, β = 97.717(2)°, γ = 108.652(2)°, V = 1344.4(2) Å3; Z = 2, ρcalc = 1.596 g·cm?3, F(000) = 664, R 1 = 0.0708 and wR 2 = 0.1823 independent reflections for 18523 observed ones (I > 2σ(I)), and the zinc atom is rendered five-coordinated in a distorted tetragonal pyramid coordination geometry by two nitrogen atoms from the phen molecule, two oxygen atoms from two L molecules, and an oxygen atom from the H2O molecule. Complex 1 forms a 1D chain by O-H…O hydrogen bonds from free-water, while the 2D layer structure is formed by C-H…O hydrogen bonds through the L ligand of adjacent chains. These compounds further result in a 3D network structure by the intermolecular π…π stacking interaction of the neighbouring layers.  相似文献   

12.
Large magnesium hydride aggregates [Mg13(Me3TACD)62‐H12)(μ3‐H6)][A]2 ((Me3TACD)H=1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane; A=AlEt4, AlnBu4, B{3,5‐(CF3)2C6H3}4) were synthesized stepwise from alkyl complexes [Mg2(Me3TACD)R3] (R=Et, nBu) and phenylsilane in the presence of additional MgII ions. The central magnesium atom is octahedrally coordinated by six hydrides as in solid α‐MgH2 of the rutile type. Further coordination to six magnesium atoms leads to a substructure of seven edge‐sharing octahedra as found in the hexagonal layer of brucite (Mg(OH)2). Upon protonolysis in the presence of 1,2‐dimethoxyethane (DME), this cluster was degraded into a tetranuclear dication [Mg2(Me3TACD)(μ‐H)2(DME)]2[A]2.  相似文献   

13.
Geometric and topological analysis and 3D reconstruction of self-assembly of icosahedral structures of Samson Mg2Zn11 clusters (space group Pm[`3]Pm\bar 3, cP39, 10 compounds) and the K6Na15Tl18H and Tm3In7Co9.29 structures were performed by computer methods (the TOPOS program package). The complete decomposition of the 3D graph of the crystal structures into cluster substructures showed the existence of the crystal-forming nanocluster precursor A comprising 45 atoms (A-45). The S-6 cluster spacers were identified in Mg2Zn11, and the S-7 cluster spacers were found in K6Na15Tl18H. In Tm3In7Co9.29, the S-6 and S-7 cluster spacers with the centers statistically occupying the same position were determined. The A-45, S-6 (octahedron), and S-7 (centered octahedron) clusters have symmetry [`3]m\bar 3m. The A-45 nanocluster contains an inner Zn(Zn)12 template icosahedron and an external quasi-spherical shell composed of 32 atoms (deltahedron D32). A-45 is equivalent to the Bergman cluster used as the approximant of the local structure of quasicrystals. For deltahedron D32, the existence of a hierarchical structure was identified as a result of self-assembly involving two types of cyclic clusters: K-7 with an atom in the center of the sixth ring and three-atom cyclic clusters K-3. The atoms of the K-3 and K-7 clusters occupy all possible positions over the 12 vertices and 20 faces of an icosahedron and thereby form an edge net of bonds made of triangles. For the K6(Na14MTl18) structures (M = Mg, An, Cd, Hg), the cluster nature of superstructure ordering of three chemically different atoms (14Na, M, and 18Tl) over 33 positions of the Zn atoms in the unit cell of the basis Mg2Zn11(Mg6Zn33) structure was considered.  相似文献   

14.
The magnesium‐rich intermetallic compound Nd4.67Ru3Mg8.83 was synthesized from the elements in a sealed tantalum tube in a resistance furnace. Nd4.67Ru3Mg8.83 was characterized by X‐ray powder and single crystal diffraction: new structure type,I4/mmm, tI66, a = 946.0(1), c = 1789.5(4) pm, wR2 = 0.0368, 725 F2 values and 36 variables. Two of the five crystallographically independent magnesium sites show a small degree of Mg/Nd mixing. The ruthenium atoms have square anti‐prismatic Nd4Mg4 coordination. Always six of such anti‐prisms are condensed via common edges, leading to a CsCl analogous neodymium coordination for the Mg4 atoms. The two‐dimensional networks of edge‐sharing Ru@Nd4Mg4 antiprisms are condensed to a three‐dimensional network via Mg5@Mg34Mg14 cubes. The extended magnesium substructure shows a broad range of Mg–Mg distances from 308 to 351 pm.  相似文献   

15.
In the novel title binuclear zinc(II) Schiff base complex, bis­(μ‐11‐thio­semicarbazonoindeno[1,2‐b]quinoxaline‐8‐carboxylato)bis­[(dimethyl sulfoxide)zinc(II)] dimethyl sulfoxide tri­solvate, [Zn2(C17H9N5O2S)2(C2H6OS)2]·3C2H6OS, each ZnII atom is five‐coordinated and situated in a distorted square‐pyramidal environment, coordinated by two L2− ligands and one dimethyl sulfoxide mol­ecule. Each L2− ligand, which coordinates to two ZnII atoms, has two parts. One part, acting in a tridentate chelating mode, coordinates to one ZnII atom through two N atoms and one S atom, while another part coordinates to another ZnII atom through a monodentate carboxylate group. The whole complex has a dimeric structure. The coordination mode of the nearly planar L2− ligand is quite different from the most common mode for Schiff bases.  相似文献   

16.
The synthesis and characterization of a new ternary dilanthanum lithium hexagermanide, La2LiGe6−x (x = 0.21), belonging to the Pr2LiGe6 structure type, and a quaternary dilanthanum lithium tetragermanium disilicide, La2LiGe4Si2, which crystallizes as an ordered variant of this type, are reported. In both structures, Li is on a site of mmm symmetry. All other atoms are on sites of m2m symmetry. These structures are new representatives of a homologous linear structure series based on structural fragments of the AlB2, CaF2 and ZrSi2 structure types. The observed 17‐vertex polyhedra are typical for La atoms and the environment of the Li atom is cubic. Two Ge atoms are enclosed in a tetragonal prism with one added atom (nine‐vertex polyhedron). The trigonal prismatic coordination is typical for Ge or Si atoms. The metallic nature of the bonding is indicated by the interatomic distances and electronic structure calculations.  相似文献   

17.
Mg5TiO4(BO3)2     
Single crystals of pentamagnesium titanium(IV) tetraoxide bis(borate), Mg5TiO4(BO3)2, were prepared by slow cooling of the melt from 1623 K in air. The crystal is isostructural with the mineral ludwigite (Mg2FeO2BO3). The Mg and Ti atoms are coordinated by six O atoms and the B atom is coordinated by three O atoms. There are three Mg sites and one mixed site statistically occupied by Mg and Ti atoms. Atoms are at the following special positions: 2a (0, 0, 0) and 2d (0, , ) for two Mg atoms, 4g (x, y, 0) for the mixed Ti/Mg site and the BO3 group, and 4h (x, y, ) for a third Mg and two oxide O atoms. MgO6 and (Ti/Mg)O6 octahedra are connected by sharing of edges to form zigzag folding layers along the c axis. Triangular prismatic tunnels are formed between the folding layers by sharing apical O atoms of the MgO6 and (Ti/Mg)O6 octahedra.  相似文献   

18.
In the three title complexes, namely (2,2′‐biquinoline‐κ2N,N′)dichloro­palladium(II), [PdCl2(C18H12N2)], (I), and the corresponding copper(II), [CuCl2(C18H12N2)], (II), and zinc(II) complexes, [ZnCl2(C18H12N2)], (III), each metal atom is four‐coordinate and bonded by two N atoms of a 2,2′‐biquinoline molecule and two Cl atoms. The PdII atom has a distorted cis‐square‐planar coordination geometry, whereas the CuII and ZnII atoms both have a distorted tetra­hedral geometry. The dihedral angles between the N—M—N and Cl—M—Cl planes are 14.53 (13), 65.42 (15) and 85.19 (9)° for (I), (II) and (III), respectively. The structure of (II) has twofold imposed symmetry.  相似文献   

19.
The γ‐brass type phase Pt2Zn11—δ (0.2 < δ < 0.3) was prepared by reaction of the elements in evacuated silica ampoules. The structures of crystals grown in the presence of excess zinc or alternatively excess platinum were determined from single crystal X‐ray diffraction intensities and confirmed by Rietveld profile fits. Pt2Zn10.72(1) crystallizes in the space group I4¯3m, a = 908.55(4) pm, Z = 4. The structure refinement converged at RF = 0.0302 for Io > 2σ (Io) for 293 symmetrically independent intensi ties and 19 variables. The structure consists of a 26 atom cluster which is comprised of four crystallographically distinct atoms. The atoms Zn(1), Pt(1), Zn(2) and Zn(3) form an inner tetrahedron IT, an outer tetrahedron OT, an octahedron OH, and a distorted cuboctahedron CO respectively. About 14 % of the Zn(1) sites are unoccupied. Pt2Zn10.73 melts at 1136(2) K. It is a moderate metallic conductor (ρ298 = 0.2—0.9 mΩ cm) whose magnetic properties (χmol = —4.6 10—10 to —5.4 10—10 m3 mol—1) are dominated by the core diamagnetism of its components.  相似文献   

20.
Magnesium alloys are the basis for the creation of light and ultra‐light alloys. They have attracted attention as potential materials for the accumulation and storage of hydrogen, as well as electrode materials in metal‐hydride and magnesium‐ion batteries. The search for new metal hydrides has involved magnesium alloys with rare‐earth transition metals and doped by p‐ or s‐elements. The synthesis and characterization of a new quaternary carbide, namely dimagnesium lithium aluminium carbide, Mg1.52Li0.24Al0.24C0.86, belonging to the family of hexagonal close‐packed (hcp) structures, are reported. The title compound crystallizes with hexagonal symmetry (space group Pm2), where two sites with m2 symmetry and one site with 3m. symmetry are occupied by an Mg/Li statistical mixture (in Wyckoff position 1a), an Mg/Al statistical mixture (in position 1d) and C atoms (2i). The cuboctahedral coordination is typical for Mg/Li and Mg/Al, and the C atom is enclosed in an octahedron. Electronic structure calculations were used for elucidation of the ability of lithium or aluminium to substitute magnesium, and evaluation of the nature of the bonding between atoms. The presence of carbon in the carbide phase improves the corrosion resistance of the Mg1.52Li0.24Al0.24C0.86 alloy compared to the ternary Mg1.52Li0.24Al0.24 alloy and Mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号