首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the non-enzymatic radical-scavenging activity of β-carotene-related compounds and other polyenes, we used differential scanning calorimetry to study the kinetics of radical polymerization of methyl methacrylate (MMA) by 2,2′-azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) in the absence or presence of polyenes under nearly anaerobic conditions at 70°C, and analyzed the results with an SAR approach. The polyenes studied were all-trans retinol, retinol palmitate, calciferol, β-carotene and lycopene. Polyenes produced a small induction period. The stoichiometric factor (n) (i.e. the number of radicals trapped by each inhibitor molecule) of polyenes was close to 0. Tetraterpenes (β-carotene, lycopene) suppressed significantly more of the initial rate of polymerization (R inh) than did diterpenes (retinol, retinol palmitate). The inhibition rate constants (k inh) for the reaction of β-carotene with AIBN-or BPO-derived radicals were determined to be 1.2–1.6?×?105 l?/?mol?s, similar to published values. A linear relationship between k inh and the kinetic chain length (KCL) for polyenes was observed; as k inh increased, KCL decreased. KCL also decreased significantly as the number of conjugated double bonds in the polyenes increased. Polyenes, particularly β-carotene and lycopene, acted as interceptors of growing poly-MMA radicals.  相似文献   

2.
The reactivity of flavonoids as radical scavengers was investigated under kinetic considerations using radical polymerization of methyl methacrylates initiated by benzoyl peroxide. The number of radicals which are trapped by each molecule of phenol (the stoichiometric factors, n values) decreased in the order of epigallocatechin-3-O-gallate (ECG) (5.5) > catechin (3.5) > resveratrol (2.4) > quercetin (1.9) > n-propylgallate (1.5) > hesperetin (1.0). The inhibition rate constants (k(inh)) (1-3 x 10(3) 1/(mol s)) for the flavonoids were not different from each other, and, therefore, the radical scavenging activity depend on n values. The n values of the fully oxidized flavonoids were estimated from the frontier orbital theory, using PM3 semiempirical molecular orbital calculation. The experimental n values were consistent with the calculated values.  相似文献   

3.
Retinol neutral radicals (RS-retinol˙), generated from the reaction of retinol with 4-pyridylthiyl and 2-pyridylthiyl radicals in argon-saturated methanol, undergo β-elimination, which can be monitored via the slow secondary absorption rise at 380 nm attributed to the rearrangement of the unstable retinol neutral addition radicals to the more stable addition radicals. Rate constants for the β-elimination reactions (k(β)) of 4-PyrS-retinol˙ were measured at different temperatures and the Arrhenius equation for the reaction is described by log (k(β)/s(-1)) = (12.7 ± 0.2) - (54.3 ± 1.3)/θ, where θ = 2.3RT kJ mol(-1). The reactivities of retinol addition radicals (RS-retinol˙), generated from the reaction of retinol with various thiyl radicals, towards oxygen have also been investigated in methanol. In the presence of oxygen, the decay of RS-retinol˙ fits to biexponential kinetics and both observed rate constants for the RS-retinol˙ decay are oxygen-concentration dependent. This suggests that at least two thiyl addition radicals, formed from the reaction of RS˙ with retinol, undergo oxygen addition reactions. In light of the estimated rate constants for oxygen addition to RS-retinol˙ and RS-CAR˙ (CAR: carotenoid), the antioxidant-prooxidant properties of retinol are discussed.  相似文献   

4.
The rate constants, k(inh), for reaction of stilbazulenyl-bis-nitrone (STAZN, 1) with peroxyl radicals and the number of radicals trapped, n, are compared with those of phenolic antioxidants 2,2,5,7,8-pentamethyl-6-hydroxychroman (PMHC, 4a), 2,5,7,8-tetramethyl-6-hydroxychroman-2-carboxylic acid (Trolox, 4b), and 2,6-di-tert-butyl-4-methoxyphenol (DBHA, 5). The behavior of STAZN depended markedly on the media and type of initiator used, water-soluble or lipid-soluble. In styrene/chlorobenzene and initiation by azo-bis(isobutyronitrile) (AIBN), k(inh) (STAZN) = 0.64 k(inh) (5) = 0.02k(inh) (4a). On addition of methanol, the k(inh) of STAZN increased 6-fold to be four times that of 5 while that of 4a decreased 6-fold. In aqueous SDS-micelles containing methyl linoleate and initiation with water-soluble azo-bis(amidinopropane)2HCl, ABAP, the relative k(inh) values were 1 >or= 4b > 5. In dilinoleoylphosphatidyl choline (DLPC) bilayers and initiation with lipid-soluble azo-bis-2,4(dimethylvaleronitrile) (DMVN), the k(inh) order was 5 > 4b > 1. During initiation with ABAP in micelles and bilayers, the calculated values of k(inh) for STAZN changed during the induction period. The experimental results are interpreted in terms of the conformation of STAZN, which is transoid in homogeneous solution but cisoid in aqueous dispersions of lipids. In such dispersions, the STAZN lies at the lipid-water interface where it traps water-soluble peroxyl radicals by a single electron-transfer mechanism. The cisoid conformation at lipid-water interfaces is supported by theoretical calculations.  相似文献   

5.
The all-trans to mono-cis isomerizations of polyenes and two C40H56 carotenes, beta-carotene and lycopene, at the ground singlet (S0) and triplet (T1) states are studied by means of quantum chemistry computations. At the S0 state of polyenes containing n acetylene units (Pn), we find that the energy barrier of the central C=C rotation decreases with n. In contrast, however, at the T 1 state, the rotational barrier increases with n. For the C40H56 carotenes, the rotational barriers of lycopene are lower than those of their beta-carotene counterparts. This difference renders the rotational rates of lycopene to be 1-2 orders of magnitude higher than those of beta-carotene at room temperature. For both these carotenes, the barrier is lowest for the rotation toward the 13-cis isomer. The relative abundances are in the following order: all-trans > 9-cis > 13-cis > 15-cis. Although the 5-cis isomer of lycopene has the lowest energy among the cis isomers, its formation from the all-trans form is restricted, owing to a very large rotational barrier. The possible physiological implications of this study are discussed.  相似文献   

6.
We have developed a reversed-phase high-performance liquid chromatographic assay for the measurement of low nanogram levels of beta-carotene in a single sample of human buccal mucosa cells. The method includes a simple sonification step for cell disruption and release of the compounds into the supernatant. The limits of detection were 0.02, 0.02 and 0.07 ng/mg of protein for beta-carotene, retinol and retinol palmitate, respectively. Two patient populations were analysed. Average endogenous levels for beta-carotene normalized to protein were 0.25 ng/mg of protein (range 0.04-1.9 ng/mg, twelve patients). No evidence of endogenous retinol or retinol palmitate could be detected in the human samples. An oral dosing study of four normal individuals showed a wide variation of beta-carotene uptake. This rapid and sensitive method will enable investigators to use the non-invasive technique of buccal mucosa cell harvesting to determine cellular depot levels of beta-carotene in various patient populations.  相似文献   

7.

The reactivity of flavonoids as radical scavengers was investigated under kinetic considerations using radical polymerization of methyl methacrylates initiated by benzoyl peroxide. The number of radicals which are trapped by each molecule of phenol (the stoichiometric factors, n values) decreased in the order of epigallocatechin-3- O -gallate (ECG) (5.5) > catechin (3.5) > resveratrol (2.4) > quercetin (1.9)> n -propylgallate (1.5) > hesperetin (1.0). The inhibition rate constants ( k inh ) (1-3 ‐ 10 3 l/(mol s)) for the flavonoids were not different from each other, and, therefore, the radical scavenging activity depend on n values. The n values of the fully oxidized flavonoids were estimated from the frontier orbital theory, using PM3 semiempirical molecular orbital calculation. The experimental n values were consistent with the calculated values.  相似文献   

8.
The reaction products in the presence of Lewis acid of isoeugenol (1) with ethanethiol, thiophenol, 2-mercaptothiazoline or 2-mercapto-1-methylimidazole (ISO-S1-ISO-S-4) were obtained. The radical-scavenging activity of these compounds was investigated using the induction period method for polymerization of methyl methacrylate (MMA) initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN) and benzoyl peroxide (BPO) and monitored by differential scanning calorimetry (DSC). For BPO, the stoichiometric factor (number of free radicals trapped by one mole of antioxidant moiety, n) declined in the order isoeugenol (1.8) > ISO-S-1 (1.6) > ISO-S-2 (1.2) > ISOS- 3 (0.9) > ISO-S-4 (0.3), whereas for AIBN, their n values were about 1, except for ISOS- 3 (0.6). The ratio of the rate constant of inhibition to that of propagation (k(inh)/k(p)) for BPO declined in the order ISO-S-4 (56) > ISO-S-3 (15) > ISO-S-2 (11) >ISO-S-1 (9) > isoeugenol (8). Similarly, for AIBN the k(inh)/k(p) of the reaction products (33-57) was greater than that of isoeugenol (31). The reaction products of isoeugenol with a SH group showed greater inhibition rate constants (kinh) than the parent compound isoeugenol.  相似文献   

9.
The preparation of two highly sensitive fluorogenic α-tocopherol (TOH) analogues which undergo >30-fold fluorescence intensity enhancement upon reaction with peroxyl radicals is reported. The probes consist of a chromanol moiety coupled to the meso position of a BODIPY fluorophore, where the use of a methylene linker (BODIPY-2,2,5,7,8-pentamethyl-6-hydroxy-chroman adduct, H(2)B-PMHC) vs an ester linker (meso-methanoyl BODIPY-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid, H(2)B-TOH) enables tuning their reactivity toward H-atom abstraction by peroxyl radicals. The development of a high-throughput fluorescence assay for monitoring kinetics of peroxyl radical reactions in liposomes is subsequently described where the evolution of the fluorescence intensity over time provides a rapid, facile method to conduct competitive kinetic studies in the presence of TOH and its analogues. A quantitative treatment is formulated for the temporal evolution of the intensity in terms of relative rate constants of H-atom abstraction (k(inh)) from the various tocopherol analogues. Combined, the new probes, the fluorescence assay, and the data analysis provide a new method to obtain, in a rapid, parallel format, relative antioxidant activities in phospholipid membranes. The method is exemplified with four chromanol-based antioxidant compounds differing in their aliphatic tails (TOH, PMHC, H(2)B-PMHC, and H(2)B-TOH). Studies were conducted in six different liposome solutions prepared from poly- and mono-unsaturated and saturated (fluid vs gel phase) lipids in the presence of either hydrophilic or lipophilic peroxyl radicals. A number of key insights into the chemistry of the TOH antioxidants in lipid membranes are provided: (1) The relative antioxidant activities of chromanols in homogeneous solution, arising from their inherent chemical reactivity, readily translate to the microheterogeneous environment at the water/lipid interface; thus similar values for k(inh)(H(2)B-PMHC)/k(inh)(H(2)B-TOH) in the range of 2-3 are recorded both in homogeneous solution and in liposome suspensions with hydrophilic or lipophilic peroxyl radicals. (2) The relative antioxidant activity between tocopherol analogues with the same inherent chemical reactivity but bearing short (PMHC) or long (TOH) aliphatic tails, k(inh)(PMHC)/k(inh)(TOH), is ~8 in the presence of hydrophilic peroxyl radicals, regardless of the nature of the lipid membrane into which they are embedded. (3) Antioxidants embedded in saturated lipids do not efficiently scavenge hydrophilic peroxyl radicals; under these conditions wastage reactions among peroxyl radicals become important, and this translates into larger times for antioxidant consumption. (4) Lipophilic peroxyl radicals show reduced discrimination between antioxidants bearing long and short aliphatic tails, with k(inh)(PMHC)/k(inh)(TOH) in the range of 3-4 for most lipid membranes. (5) Lipophilic peroxyl radicals are scavenged with the same efficiency by all four antioxidants studied, regardless of the nature of their aliphatic tail or the lipid membrane into which they are embedded. These data underpin the key role the lipid environment plays in modulating the rate of reaction of antioxidants characterized by similar inherent chemical reactivity (arising from a conserved chromanol moiety) but differing in their membrane mobility (structural differences in the lipophilic tail). Altogether, a novel, facile method of study, new insights, and a quantitative understanding on the critical role of lipid diversity in modulating antioxidant activity in the lipid milieu are reported.  相似文献   

10.
In 1997, the National Institute of Standards and Technology (NIST) released Standard Reference Material (SRM) 2383 Baby Food Composite. This SRM can be used as a control material when assigning values to in-house control materials and when validating analytical methods for the measurement of proximates, vitamins, minerals, and trace elements in baby foods and similar matrixes. The Certificate of Analysis for SRM 2383 provides certified and reference values for concentrations of lutein, zeaxanthin, beta-cryptoxanthin, lycopene, alpha-carotene, beta-carotene, delta-tocopherol, gamma-tocopherol, alpha-tocopherol, retinol, and retinyl palmitate for 2 types of sample preparation--extraction and saponification. The assigned values were based on the agreement of measurements made by NIST and collaborating laboratories. The Certificate of Analysis also provides reference and information values for concentrations of proximates, minerals, and additional vitamins; assignment of these values is discussed in a companion paper (this issue, page 276).  相似文献   

11.
Ascorbic acid (vit. C) is a cofactor whose reactivity toward peroxyl and other radical species has a key-role in its biological function. At physiological pH it is dissociated to the corresponding anion. Derivatives of ascorbic acid, like ascorbyl palmitate, are widely employed in food or in cosmetics and pharmaceuticals. While the aqueous chemistry of ascorbate has long been investigated, in non-aqueous media it is largely unexplored. In this work oxygen-uptake kinetics, EPR and computational methods were combined to study the reaction of peroxyl radicals with two lipid-soluble derivatives: ascorbyl palmitate and 5,6-isopropylidene-l-ascorbic acid in non-aqueous solvents. In acetonitrile at 303 K the undissociated AscH(2) form of the two derivatives trapped peroxyl radicals with k(inh) of (8.4 ± 1.0) × 10(4) M(-1) s(-1), with stoichiometric factor of ca. 1 and isotope effect k(H)/k(D) = 3.0 ± 0.6, while in the presence of bases the anionic AscH(-) form had k(inh) of (5.0 ± 3.3) × 10(7) M(-1) s(-1). Reactivity was also enhanced in the presence of acetic acid and the mechanism is discussed. The difference in reactivity between the AscH(2)/AscH(-) forms was paralleled by a difference in O-H bond dissociation enthalpy, which was determined by EPR equilibrations as 81.0 ± 0.4 and 72.2 ± 0.4 kcal mol(-1) respectively for AscH(2) and AscH(-) in tert-butanol at 298 K. Gas-phase calculations for the neutral/anionic forms were in good agreement yielding 80.1/69.0 kcal mol(-1) using B3LYP/6-31+g(d,p) and 79.0/67.8 kcal mol(-1) at CBS-QB3 level. EPR spectra of ascorbyl palmitate in tBuOH consisted of a doublet with HSC = 0.45 G centred at g = 2.0050 for the neutral radical AscH˙ and a doublet of triplets with HSCs of 1.85 G, 0.18 G and 0.16 G centred at g = 2.0054 for Asc˙(-) radical anion.  相似文献   

12.
We used reversed-phase HPLC with diode array detection to simultaneously measure the major isoforms of vitamins A, E, and the carotenoids in serum from 55 healthy people with spinal cord injuries. Typically, the method measured retinol (vitamin A), alpha-tocopherol (vitamin E) and beta-carotene, alpha-carotene, lutein, lycopene, and cryptoxanthin (carotenoids). gamma-Tocopherol (vitamin E), 25-hydroxycalciferol (vitamin D), and the carotenoid zeaxanthin could also be measured when they were present in high concentrations. Healthy people with spinal cord injuries were more likely than similar people without injuries to have low concentrations of alpha-tocopherol, and to a lesser extent retinol and beta-carotene.  相似文献   

13.
Fullerene derivatives incorporating one or two 3,5-di-tert-butyl-4-hydroxyphenyl groups were synthesized by 1,3-dipolar cycloaddition of azomethine ylides to C(60). The O-H bond dissociation enthalpies (BDEs) of these compounds were estimated by studying, by means of EPR spectroscopy, the equilibration of each of these phenols and 2,6-di-tert-butyl-4-methylphenol (BHT) with the corresponding phenoxyl radicals. The antioxidant activity of the investigated phenols was also determined by measuring the rate constants for their reaction with peroxyl radicals in controlled autoxidation experiments and compared to that recorded under identical experimental settings for [60]fullerene itself and unlinked BHT. The results indicate that linking of the BHT structure to C(60) does not substantially alter the thermochemistry and kinetics of its reaction with peroxyl radicals, but such adducts may behave as interesting bimodal radical scavengers. The inherent rate constant for trapping of peroxyl radicals by C(60) per se (k(inh)=3.1+/-1.1 x 10(2) m(-1) s(-1)) indicates that, contrary to previous reports, [60]fullerene is an extremely weak chain-breaking antioxidant.  相似文献   

14.
Abstract— The UV spectra of solid amorphous films of all-trans retinyl polyenes. i. e. retinyl acetate, retinyl palmitate, axerophtene and retinal, on supports are investigated. It is shown that in the absence of oxygen the spectra of the films do not change at room temperature; in the presence of O2 the fast oxidation of the polyenes occurs which in the case of retinol esters and axerophtene is accompanied by the shift of the absorption maxima to the shorter wavelengths. Consequently, the interpretation of blue shift of UV spectra of retinyl polyene films given by Hotchandani and Leblanc (1976) is incorrect. The formation of the only compound is shown to occur during the first stage of the oxidation of retinyl acetate and retinyl palmitate films. Proceeding from IR spectra of oxidized films the compound is assigned to the corresponding 11-cis isomer.  相似文献   

15.
Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione), a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME), as a substitute for GSH, was investigated by the induction period (IP) method for polymerization of methyl methacrylate (MMA) initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, a source of alkyl radicals, R(.)) and benzoyl peroxide (BPO, a source of peroxy radicals, PhCOO(.)) using differential scanning calorimetry (DSC). Upon PhCOO(. )radical scavenging, the stoichiometric factors (n, number of free radical trapped by one mole of antioxidant) for caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid were 2.4, 1.8, 1.7 and 0.9, whereas upon R(.) radical scavenging, the corresponding values were 1.3, 1.2, 1.0 and 0.8, respectively. Antioxidants with n values close to 2 suggest the stepwise formation of semiquinone radicals and quinones. By contrast, those with n values close to 1 suggest the formation of dimers after single-electron oxidation, possibly due to recombination of corresponding aryloxy radicals. The ratio of the rate constant of inhibition to that of propagation (k(inh)/k(p)) declined in the order chlorogenic acid > p-coumaric acid > ferulic acid > caffeic acid. The ratio of the observed IP for the phenolcarboxylic acid/2-mercapto-ethanol (ME) mixture (1:1 molar ratio) (A) to the calculated IP (the simple sum of phenol acid antioxidant and ME) (B) was investigated. Upon R(.) scavenging, the caffeic acid or p-coumaric acid/ME mixture was A/B > 1, particularly the former was 1.2, suggesting a synergic effect. By contrast, upon PhCOO(.) scavenging, the corresponding mixture was A/B < 1, particularly the latter was 0.7, suggesting an antagonistic effect. Upon both radicals scavenging, the A/B for the ferulic acid or chlorogenic acid/ME mixture was approximately 1. The reported beneficial antioxidant, anti-inflammatory and anticancer effects of caffeic acid and p-coumaric acid may be related to their prooxidant-antioxidant balance in the presence of GSH.  相似文献   

16.
The design and the synthesis of a new family of hydroxy-4-thiaflavanes, in which the reactive phenolic OH is ortho to the sulfur atom of the benzofused oxathiin ring, allowed to prepare antioxidants that show rate constants for the reaction with peroxyl radicals (k(inh)), and bond dissociation energies (BDE), of the ArO-H group identical to those of α-tocopherol, the main component of vitamin E and the most effective lipophilic antioxidant known in nature. The peculiar conformation of the six-membered heterocyclic ring prevents the formation of an intramolecular hydrogen bond between the OH group and the S atom, while ensuring a good stabilization by electron donation of the phenoxyl radical formed after the reaction with peroxyl radicals. The preparation of these compounds was achieved through an inverse electron demand hetero Diels-Alder reaction of styrenes with o-thioquinones, in turn prepared from accurately designed 1,3-dihydroxy arenes. Properly arranging the substitution pattern on the aromatic ring, as in derivatives 9 and 11, allowed to reach values of k(inh) up to 4.0×10(6) M(-1) s(-1) and BDE((OH)) of 77.2 kcal mol(-1). This approach represents an innovative way to obtain highly active antioxidants without using strongly electron donating alkylamino groups which are associated with adverse toxicological profiles.  相似文献   

17.
Exposure of living organisms to UV light leads to photooxidative reactions. Peroxyl radicals are involved in the propagation of lipid peroxidation. Carotenoids are dietary antioxidants and show photoprotective effects in human skin, efficiently scavenging peroxyl radicals and inhibiting lipid peroxidation. Cultured human skin fibroblasts were used to examine the protective effects of the carotenoids, lycopene, beta-carotene and lutein on UVB-induced lipid peroxidation. The carotenoids were delivered to the cells using liposomes as the vehicle. The cells were exposed to UVB light for 20 min. Lycopene, beta-carotene and lutein were capable of decreasing UV-induced formation of thiobarbituric acid-reactive substances at 1 h to levels 40-50% of controls free of carotenoids. The amounts of carotenoid needed for optimal protection were divergent at 0.05, 0.40 and 0.30 nmol/mg protein for lycopene, beta-carotene and lutein, respectively. Beyond the optimum levels, further increases of carotenoid levels in cells led to prooxidant effects.  相似文献   

18.
In emulsion polymerization, complete entry of an initiator-derived, surface-active radical may involve its adsorption onto latex particles/water interfaces and subsequently its propagation with one more monomer molecule therein. However, all publications to date have defined this propagation step as a three-dimensional bulk reaction between a surface-active entry radical and a monomer molecule. This is incorrect conceptually. It is proposed that the rate of the propagation of surface-active entry radicals with monomer at latex particles/water interfaces be expressed as [Formula: see text] . In this equation, A is the interfacial area between water and latex particles; [M](P) and [Formula: see text] are the mean concentrations of monomer in the particle phase and entry radicals in the aqueous phase, respectively; k(I) is the radical propagation constant at the interfaces, and may be estimated via transition state theory. For seeded styrene polymerization by Hawkett et al. (J. Chem. Soc. Faraday Trans. 1 76 (1980) 1323), k(I) approximately approximately 4.2x10(-9)k(p) (mol(-1)dm(4)s(-1)) is estimated. Here k(p) is the propagation rate coefficient in bulk polymerization. This alternative approach should be useful for one to simulate radical entry rate in emulsion polymerization where the propagation step may be rate-determining, such as under monomer-starved conditions.  相似文献   

19.
Several liquid chromatography (LC) methods for analysis of vitamin A in foods and feeds have been previously reported but only a few have been applied in non-food matrixes. A validated LC method is needed for determination of vitamin A and beta-carotene in the various matrixes presented by dietary supplements. The performance of a reversed-phase method with methanol-isopropanol gradient elution was evaluated with standard retinyl derivatives and beta-carotene. The reversed-phase method is capable of separating retinol from other derivatives such as retinyl acetate, retinyl palmitate, and beta-carotene. Two types of extraction were used to extract the analytes from the dietary supplements: a hexane-methylene chloride extraction for soft-gel capsules containing beta-carotene, and a direct solvent extraction for dietary supplements in tablet form. The direct solvent extraction consisted of treatment with ethanol and methylene chloride following addition of hot water (55 degrees C). Results with the reversed-phase method for vitamin A and beta-carotene in the products examined (n = 8) indicated excellent method performance. The main form of vitamin A or beta-carotene in dietary supplements was the all-trans isomer. The reversed-phase method avoids saponification and is rapid, accurate, precise, and suitable for simultaneous determination of retinyl derivatives and beta-carotene in dietary supplements.  相似文献   

20.
The absolute rate constants, k(inh), and stoichiometric factors, n, of pyrroles, 2-methyl-3-ethylcarboxy-4,5-di-p-methoxyphenylpyrrole, 6, 2,3,4,5-tetraphenylpyrrole, 7, and 2,3,4,5-tetra-p-methoxyphenylpyrrole, 8, compared to the phenolic antioxidant, di-tert-butylhydroxyanisole, DBHA, during inhibited oxidation of cumene initiated by AIBN at 30 degrees C gave the relative antioxidant activities (k(inh)) DBHA > 8 > 7 > 6 and n = 2, whereas in styrene, 8 > DBHA. These results are explained by hydrogen atom transfer, HAT, from the N-H of pyrroles to ROO(*) radicals. The k(inh) values in styrene of dimethyl esters of the bile pigments of bilirubin ester (BRDE), of biliverdin ester (BVDE), and of a model compound (dipyrrinone, 1) gave k(inh) in the order pentamethylhydroxychroman (PMHC) > BRDE > 1 > BVDE. These antioxidant activities for BVDE and the model compound, 1, and PMHC dropped dramatically in the presence of methanol due to hydrogen bonding at the pyrrolic N-H group. In contrast the k(inh) of BRDE increased in methanol. We now show that pyrrolic compounds may react by HAT, proton-coupled electron transfer, PCET, or single electron transfer, SET, depending on their structure, the nature of the solvent, and the attacking radical. Compounds BVDE and 1 react by the HAT or PCET pathway (HAT/PCET) in styrene/chlorobenzene with ROO(*) and with the DPPH(*) radical in chlorobenzene according to N-H/N-D kH/kD of 1.6, whereas the DKIE with BRDE was only 1.2 with ROO(*). The antioxidant properties of polypyrroles of the BVDE class and model compounds (e.g., 1) are controlled by intramolecular H bonding which stabilizes an intermediate pyrrolic radical in HAT/PCET. According to kinetic polar solvent effects on the monopyrrole, 8, and BRDE, which gave increased rates in methanol, some pyrrolic structures are also susceptible to SET reactions. This conclusion is supported by some calculated ionization potentials. The antioxidant mechanism for BRDE with peroxyl radicals is described by the PCET reaction. Experiments using the 2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical (DBMP(*)) showed this to be a better radical to monitor HAT activities in stopped-flow kinetics compared to the use of the more popular DPPH(*) radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号