首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
高速列车车轮磨耗预测仿真   总被引:5,自引:2,他引:3  
为了研究高速列车车轮磨耗问题,建立了车辆多体系统动力学和车轮磨耗耦合模型.模型中考虑了车辆系统悬挂非线性?轮轨接触几何非线性和轮轨蠕滑力非线性.采用数值仿真方法研究车轮型面的磨耗分布和发展.考虑车辆通过一条由直线和不同曲线组成的典型线路,通过动力学仿真计算轮轨接触情况,采用FASTSIM计算轮轨接触斑上车轮磨耗量,进行车轮型面磨耗量的累积和型面外形更新,然后再进入下一个磨耗循环的计算.通过比较分析,选择车轮型面垂直磨耗0.1mm为型面更新的条件,分别采用Archard磨耗模型?基于摩擦功的磨耗模型和基于磨耗指数的磨耗模型来预测车轮型面磨耗发展情况.并与测量得到的车辆实际线路运行中车轮磨耗量进行了比较.结果表明,仿真得到的车轮型面磨耗发展情况和实际测量结果趋势相同,其中基于磨耗功和磨耗指数模型的计算结果接近,而Archard模型算得的轮缘磨耗相对较大.因此,可以根据具体线路有针对性地选择磨耗模型,通过仿真方法预测车轮型面的磨耗,为高速列车的安全可靠运行提供指导.  相似文献   

2.
应用轮轨型面测量仪测量实际运用中的磨耗后机车车轮,基于标准与磨耗后机车车轮型面,建立轮轨接触三维有限元模型,计算分析不同横移量下的接触斑和等效应力. 搭建轮轨接触试验台,使用取自现场的车轮与钢轨试块进行试验,分析不同横移量下轮轨接触状态. 针对磨耗前后车轮与标准钢轨接触的有限元计算与试验进行对比分析. 结果表明:横移量对轮轨接触状态有着显著的影响,横移量过大会加速机车车轮的磨耗;与标准型面相比,磨耗后车轮型面与标准钢轨接触时的接触斑面积较大,最大等效应力较小;通过轮轨接触试验台所得接触斑形状和大小与仿真计算所得结果一致性较好,证明了有限元仿真计算的可靠性.   相似文献   

3.
针对高速列车车轮踏面磨耗单一模型无法对各种复杂工况下列车车轮踏面磨耗进行定量计算的问题, 提出一种基于恒等映射多层极限学习机的高速列车车轮踏面磨耗测量方法. 首先将恒等映射引入到多层极限学习机中, 提出一种基于恒等映射的多层极限学习机模型(identity multilayer extreme learning machine, I-ML-ELM), 采用机器学习公共数据集对该模型进行性能验证, 数值结果表明I-ML-ELM模型具有较好的准确性与泛化性; 然后基于车辆-轨道耦合动力学理论建立高速列车的车辆-轨道耦合动力学模型, 模拟列车运行的不同工况, 观测和分析高速列车的车轮踏面磨耗情况, 并通过I-ML-ELM预测模型对高速列车车轮踏面磨耗量进行学习及预测; 最后应用高速列车车轮踏面磨耗的实际测量值对I-ML-ELM预测模型进行进一步的验证, 结果表明: I-ML-ELM预测模型的各项性能参数指标在整体上优于以下五种网络: ELM, FLN, ML-ELM, ML-KELM和DLSFLN, 通过高速列车线路实测数据的进一步验证表明, 本文提出的基于I-ML-ELM的高速列车车轮踏面磨耗预测模型能较好地反映不同参数对高速列车车轮踏面磨耗值的影响规律.   相似文献   

4.
两种型面轮轨滚动接触蠕滑率和摩擦功   总被引:13,自引:6,他引:13  
采用数值分析方法详细分析了2种型面轮对与轨道在滚动接触过程中的接触几何、蠕滑率和摩擦功。在摩擦功分析计算中利用了Kalker三维弹性体非赫兹滚动接触理论,并考虑了轮轨的结构变形的影响。分析计算表明,在轮对运动相同的情况下,磨耗型轮对与轨道之间的蠕滑率和摩擦功与锥型轮对轨道之间的蠕滑率和摩擦功相差甚大。数值分析结果表明,现行铁路中正在推广使用的磨耗型轮对并不能减少轮轨接触表面之间的磨损,磨损型车轮的型面与钢轨尺寸的匹配还有待进一步改进。  相似文献   

5.
车轮踏面剥离是轨道车辆车轮非圆化损伤的常见形式之一。轮轨滚动接触过程中,车轮踏面剥离会循环冲击钢轨,诱发异常大的轮轨动态相互作用,严重影响高速列车运行平稳性和安全性。基于三维轮轨滚动接触有限元模型,模拟了高速列车车轮踏面剥离引起的轮轨冲击力学响应,分析了轮轨冲击过程中的轮轨接触力/压力、接触斑及黏/滑特性、钢轨表面节点速度分布和应力/应变状态等响应特征,讨论了列车速度、剥离长度和剥离深度等关键参数对轮轨冲击响应的影响。结果发现,车轮踏面剥离引起的轮轨动态垂向接触力随列车速度的提高呈现出先增大后减小的变化趋势,并在列车速度为300 km/h出现最大值,约为轮轨准静态垂向接触力的1.35倍;随着剥离长度的增大,轮轨动态接触力、轮/轨von Mises应力和等效塑性应变均显著增大;随着剥离深度的增大,仅车轮von Mises应力和等效塑性应变显著增大。  相似文献   

6.
针对难以建立轮轨磨耗的单一模型和无法对各种工况下车轮踏面磨耗进行定量计算的问题,提出一种基于SQPSO优化DELM的踏面磨耗测量方法(SQPSO-DELM). 首先将衍生特性引入到极限学习机中,提出一种衍生极限学习机模型(DELM). 然后引入序列二次规划(SQP)方法和量子粒子群优化(QPSO)算法,对DELM的参数进行优化. 通过SQPSO-DELM预测模型,对车辆动力学模型模拟不同试验参数下的车轮踏面最大磨耗量以及对现场列车踏面磨耗程度的实际测量值进行训练和预测. 结果表明:SQPSO-DELM预测模型的性能参数指标均优于LSSVM、ELM、PSO-ELM和QPSO-ELM,能较好地反映不同参数对车轮踏面磨耗值的影响规律.   相似文献   

7.
研究了中国高速列车车轮多边形磨耗的形成原因,考虑轮对的旋转惯量,建立了高速列车轮对-轨道-盘式制动系统有限元模型. 基于轮轨系统摩擦自激振动的理论,采用有限元复特征值分析法研究了高速列车制动时轮对-轨道-盘式制动系统的稳定性. 研究了饱和的轮轨蠕滑力和盘式制动系统摩擦力耦合作用对车轮多边形磨耗的影响,并调查了轮轨-轨道-盘式制动系统的参数敏感性. 数值模拟结果表明:在饱和的轮轨蠕滑力和盘式制动器摩擦力耦合作用下,轮轨系统的摩擦自激振动导致高速列车车轮多边形磨耗的产生,其导致的21~22阶和23~24阶车轮多边形磨耗占主导地位,这与中国高速列车高阶车轮多边形磨耗最为符合. 饱和的轮轨蠕滑力主要影响较低阶车轮多边形磨耗,盘式制动器摩擦力主要影响较高阶车轮多边形磨耗. 制动压力为13 kN时,车轮多边形磨耗形成的几率最小,发展速度最慢. 过高或者过低的垂向悬挂力均不利于抑制车轮多边形磨耗. 垂向悬挂力为75 kN时,车轮多边形磨耗形成的可能性最小,发展速度最慢.   相似文献   

8.
高速列车车轮多边形磨耗是我国高速列车自2008年开行以来出现的最严重的问题之一,直接影响到高速列车的运行安全. 利用高速轮轨滚动试验机试验研究了研磨子的增黏作用和局部缺陷修复作用,探讨了其作用机制. 建立了由轮对、钢轨和整体道床组成的轮轨系统滑动摩擦自激振动模型,研究了轮轨黏着和滑动工况下的轮轨系统摩擦自激振动发生趋势,指出研磨子抑制高速列车车轮多边形磨耗的主要机理在于以下两个方面:(1)研磨子的增黏作用,使轮轨系统制动和牵引时不容易发生滑动,消除了车轮多边形发生的条件;(2)研磨子中硬质颗粒能够有效地将车轮踏面的微观缺陷及时打磨清除,从而有效抑制车轮多边形、异常磨耗及接触疲劳裂纹的产生.   相似文献   

9.
曲线半径对钢轨磨损影响的数值计算与试验分析   总被引:1,自引:1,他引:1  
用数值计算方法详细分析了静态接触情况下,轮轨接触质点间蠕滑力、黏滑区的分布和摩擦功随曲线半径的变化,利用模拟试验研究了曲线半径对钢轨试样磨损特性的影响.结果表明:钢轨磨损量随曲线半径的增大呈非线性减小,在小于1 200 m的小曲线半径范围内,钢轨磨损量值随曲线半径的减小而急剧增大;随着曲线半径的增大,轮轨接触斑中最大滑动量逐渐减小,滑移区的面积减小,而黏着区的面积增大;轮轨接触斑上摩擦功随曲线半径的增大呈非线性的减小.  相似文献   

10.
为对货车车轮磨耗寿命进行预测,在SIMPACK中建立车辆-轨道多体动力学模型,基于轮轨半赫兹接触理论和Zobory车轮磨耗模型编制车轮磨耗数值仿真程序.对C80型货车等在环形线和大秦线上运行时的车轮磨耗行为进行仿真,并根据实测结果和仿真结果对Zobory车轮磨耗模型进行修正,最后利用修正后的Zobory模型对C80型货车在国内某重载线路上运行时的车轮磨耗寿命进行预测.结果表明:车辆在环形线和大秦线上运行时,仿真得到的车轮磨耗分布范围以及圆周磨耗深度和轮缘厚度随运行里程的变化趋势均与现场实测结果较为接近,但车轮圆周磨耗率分别为实测结果的1.394 ~1.842倍和2.172 ~3.658倍,主要原因是仿真中采用了轮轨半赫兹接触理论,考虑了弹性剪切变形对滑动速度的影响,并且国内货车采用的CL60钢的硬度大于国外BSll钢的硬度;C80型货车在国内某重载线路上运行时,利用修正后的Zobory模型仿真得到的车轮段修磨耗寿命为39×105 km,运用磨耗寿命为65×105 km,与现场统计结果较为吻合.  相似文献   

11.
高速列车车轮多边形磨耗是一种沿车轮周向的不均匀磨耗,是列车服役过程中常见的车轮失效现象,其产生的剧烈轮轨激励严重威胁车辆系统服役可靠性.制动系统作为保障高速列车服役安全的核心部件,其界面摩擦学行为直接受到轮轨激励的影响.为探究车轮多边形激励下的制动界面摩擦学行为,建立了刚柔耦合车辆动力学模型和制动系统热机耦合有限元模型,并分别通过线路试验和台架试验验证了模型的正确性.然后,提出一种考虑车轮多边形激励的制动界面摩擦学行为分析方法,能够真实地反映服役过程中制动界面摩擦学行为.基于此,研究了不同车辆运行速度下车轮多边形激励对制动系统动态接触、温度以及振动特性的影响规律.结果表明:车轮多边形磨耗导致系统接触面积、摩擦热、接触应力和振动等摩擦学行为更为复杂且剧烈.此外,系统接触面积标准差和振动加速度均方根值随速度的增加而增大.因此,车轮多边形磨耗对制动界面摩擦学行为具有不可忽略的影响.该研究成果可为制动系统界面摩擦学行为研究及结构优化设计提供有效方法与工程指导.  相似文献   

12.
为研究小半径曲线科隆蛋扣件轨道的波磨演化特征,首先通过分析钢轨波磨实测数据,获得了波磨的典型通过频率;然后运用车辆-轨道空间耦合模型和基于摩擦功理论的钢轨材料摩擦磨损模型,对曲线段钢轨波磨特性进行了分析。结果表明:导向轮可承载的外侧蠕滑力几乎全程达到饱和,内侧蠕滑力部分达到饱和,且饱和部分呈周期性出现;当蠕滑力等于饱和蠕滑力时,磨耗深度最大,并且内轨的磨耗深度幅值大于外轨。结合钢轨磨耗预测型面可知,外轨主要发生侧磨,内轨则趋向发生波磨,从而出现内轨波磨严重而外轨波磨轻微这一现象。磨耗频域特性分析表明,内轨磨耗等级含有与实测波磨通过频率相近的特征频率,且这些频率处的磨耗增长率较大,说明对应频率的磨耗将不断发展,最终形成波磨。  相似文献   

13.
车轮钢滚动剥离摩擦磨损特性研究   总被引:7,自引:1,他引:6  
在NENE-2型摩擦磨损试验机上利用往复滚动试验装置研究了不同滚滑状态下车轮钢的剥离摩擦磨损特性和碳含量对车轮钢滚动剥离磨损性能的影响.结果表明:在不同滚滑状态下摩擦副之间的摩擦力不同,平面试样的表面磨痕形貌随着不同的切向摩擦力而明显不同,随着切向摩擦力的增大滚动磨损机制亦发生改变,剥离磨损加剧且磨损深度变大,当相对滑动量增大到一定程度后,磨损表现为明显的剥层机制;碳含量对车轮钢的滚动磨损表面磨痕形貌影响显著,碳含量低时磨痕以犁沟为主,碳含量高时剥离磨损发生的概率增加.  相似文献   

14.
激光离散处理车轮钢-钢轨钢摩擦副的摩擦学性能研究   总被引:1,自引:0,他引:1  
将激光离散处理前后的车轮试样分别与钢轨试样匹配,利用滚动接触摩擦磨损试验机测试各摩擦副的摩擦系数和磨损率,研究激光离散处理对轮轨摩擦副滚动接触摩擦磨损性能的影响.结果表明:车轮试样经过激光离散处理后,其抗磨损性能大幅增加,对应的轮轨试样摩擦副的摩擦系数小幅增加,其对摩钢轨试样的磨损加剧.未处理车轮试样主要发生剥层磨损并伴随轻微的疲劳磨损;处理后的车轮试样主要发生疲劳磨损并伴随轻微的剥层磨损.这是由于激光离散处理提高了车轮试样表层材料的抗塑性变形能力,从而抑制了材料的剥层磨损.各钢轨试样均发生剥层磨损,但是车轮试样经激光离散处理后,对应钢轨试样的剥层磨损加剧.  相似文献   

15.
针对现行机械类手册中假设"旋转力矩作用下,若摩擦型高强螺栓组中各螺栓预紧力相等,则相应的被连接件结合面摩擦力也相等"的局限性,采用接触有限元方法建立与实际情况一致的螺栓组连接结构的非线性有限元模型,计算给出了预紧力和旋转力矩作用下连接结构的接触摩擦力,结果表明与各螺栓对应的被连接件结合面部位的摩擦力大小与螺栓距离螺栓组旋转中心的距离呈单调增大关系.根据有限元计算结果,提出了不采用上述"摩擦力相等"假设时,设计摩擦型高强螺栓组中螺栓预紧力的新方法,给出了相应的计算公式,分析了新、旧公式的差别及新公式的意义.  相似文献   

16.
基于微凸体接触的心盘磨耗盘摩擦行为数值模拟研究   总被引:1,自引:1,他引:0  
基于微凸体接触的粗糙表面摩擦模型以材料硬度、弹性模量、剪切模量、泊松比、表面粗糙度、微凸体高度分布概率函数和正压力等为输入参数,模拟摩擦副往复运动摩擦行为,可获得摩擦力-位移(F-δ)曲线、接触界面微凸体滑移情况.利用该模型模拟了心盘磨耗盘摩擦行为,结果表明:往复行程为2μm时,F-δ曲线为椭圆形,接触微凸体为部分滑移,往复行程大于2μm时,F-δ曲线由椭圆形逐渐变为矩形,接触微凸体由部分滑移逐渐变为完全滑移;材料表面粗糙度对摩擦系数及摩擦力的影响较小,但对接触表面的微凸体滑移特性有明显影响,粗糙度越大,引起接触微凸体完全滑移所需的位移越大,相同的位移下,发生滑移的微凸体越少.  相似文献   

17.
钢轨横向不均匀支撑刚度对钢轨波磨的影响   总被引:1,自引:1,他引:0  
建立了钢轨波浪形磨损计算模型,模型中考虑车辆轨道垂向横向耦合动力学行为、轮轨三 维滚动接触力学行为和轮轨材料摩擦磨损的循环相互作用关系. 发展了相应的计算程序,并 用1: 1试验装置验证了理论模型. 详细分析了实际线路上由轨枕离散支撑导致的钢轨横向不均匀刚度和不同行车速度对曲线钢轨接触表面不均匀磨损的影响. 通过数值分析可知: (1)列车通过曲线钢轨时,轨枕离散支撑导致的钢轨横向不均匀刚度易引发曲线钢轨波磨的形 成和发展;(2)这类钢轨波磨具有与轨枕间距几乎相等的波长和28~35mm的短波长,这个短波长不均匀磨损主要是由轮轨高频接触振动引起;(3)同一个转向 架4个车轮作用下形成的钢轨波磨最大深度波谷的分布是不同的;(4) 改变过车速度不能有效地抑制轨枕离散支撑导致的钢轨波磨形成和发展速度.  相似文献   

18.
多边形车轮是铁路机车车辆中普遍存在的一种磨损现象, 随着列车运营里程的增加, 车轮磨耗程度显著提升, 严重影响着列车乘坐舒适性和运营安全性, 借助于列车运营监测大数据开展多边形车轮动态检测方法研究具有重要意义. 本研究基于列车轴箱垂向加速度建立了多边形车轮定量识别模型, 首先通过阶次分析识别出轴箱加速度中包含的多边形车轮主要阶次, 同时获取各阶次对应的加速度幅值信息, 在此基础上引入加速度信号熵特征共同构建多边形车轮磨耗幅值识别特征矩阵, 然后建立遗传变异粒子群优化多核极限学习机 (GMPSO-MKELM) 识别模型, 通过特征矩阵与磨耗幅值的映射关系, 进一步实现了车轮多边形磨耗幅值识别. 通过仿真与现场实测数据研究结果表明, 所提出的识别模型能有效地从轴箱加速度中提取多边形车轮主要阶次, 磨耗幅值的识别精度均优于对比模型且具有较高的检测效率, 可实现均方根误差为0.0010 (仿真结果) 与0.0134 (试验结果) 的精确识别, 本文提出的多边形车轮磨耗识别模型可为列车车轮检测与智能维护提供理论基础.   相似文献   

19.
黄仕平  陈枭  萧明强 《力学学报》2023,(7):1484-1492
任何物体间的表面摩擦均可看成是粗糙面间的摩擦,且大部分粗糙表面具有分形特征.为探究分形粗糙表面的摩擦行为,利用分子动力学-格林函数法(GFMD)建立微观分形粗糙表面模型,采用位移加载控制分形粗糙表面的接触和摩擦过程,并根据广度优先搜索算法识别接触团簇分布.之后分别计算原子尺度、接触团簇尺度和界面尺度下的最大摩擦系数与摩擦力,并利用影响矩阵法研究摩擦过程中接触团簇之间的相互作用,分析接触团簇之间的距离和面积对相互作用的影响.结果表明:在摩擦过程中,摩擦系数从小尺度到大尺度逐渐减小;摩擦力随位移呈现周期性波动,接触团簇并非同时达到最大摩擦力,而是发生局部滑移,整体滑移模型预测的摩擦力是分子模拟结果的上限值;所提出的影响矩阵法可以较好地模拟接触团簇之间的相互作用,利用影响矩阵计算得到的最大摩擦力与GFMD模型结果基本一致,而不考虑局部滑移影响计算得到的最大摩擦力比GFMD模型结果大20%,并且接触团簇之间的相互作用与距离成反比,与面积成正比.结果可为粗糙表面的界面分析和优化提供理论依据.  相似文献   

20.
为了分析列车通过钢轨焊接接头时产生的轮轨动态冲击力对钢轨焊接接头表面裂纹扩展特性的影响,首先采用车辆-轨道耦合动力学数值模型计算轮轨垂向力,并建立带表面裂纹的轮轨接触有限元模型;然后将轮轨垂向力结果加载到有限元模型中分析其对裂纹扩展特性的影响。结果表明:在轮轨动态相互作用下,钢轨焊接接头处表面斜裂纹的扩展以剪切模式为主导,裂纹应力强度因子 KI 和应力强度因子范围ΔKII 随着列车速度的增大而增大;裂纹长度和裂纹面摩擦系数对应力强度因子范围ΔKII 影响较大,当裂纹长度从3mm 增加到10mm 时,其ΔKII 增大了204.2%,当裂纹面摩擦系数从0.1增加到0.6时,其ΔKII 减小了153.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号