首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous amplification of nine human short tandem repeat (STR) DNA sequences and the amelogenin locus allows reducing to an absolute minimum the amount of sample material that is necessary for genetic identification or kinship analysis. Valuable remains can be studied this way without any visible damage, as is demonstrated by typing the DNA of a tooth root from the Saxon warrior Widukind, who died about 1200 years ago. The broad applicability of the megaplex approach is shown by typing bone and teeth specimens ranging from a few months to 3000 years of age employing AmpFlSTR Profiler Plus. Additionally, megaplex STR typing is the method of choice for proving the authenticity of molecular results derived from ancient degraded DNA.  相似文献   

2.
A fluorescence energy transfer (ET) dye-labeled STR typing system (ET 16-plex) is developed for the markers used in the commercial STR typing kit PowerPlex 16, and its performance assessed using a 96-lane microfabricated capillary array electrophoresis (muCAE) system. The ET 16-plex amplicons displayed 1.6-9-fold higher fluorescence intensities compared to those produced using the single-dye (SD)-labeled multiplex kits. The ET multiplex delivered full STR profiles from 62.5 pg of DNA; half the input required for the SD kits while maintaining a similar heterozygote allele balance. This increased sensitivity should improve typing of poor-quality DNA samples by making minor or imbalanced alleles more readily detectable at the low copy number (LCN) threshold. The ET 16-plex also generated complete profiles with only 28 PCR cycles; this capability should improve LCN typing by reducing the amplification time and drop-in allele incidence. To confirm the practical advantages of ET-labeled primers, six previously problematic casework samples were tested and only the ET 16-plex kit was able to capture additional allele data. The successful development and demonstration of ET primers for higher sensitivity STR typing offers a simple solution to improving current commercial multiplex typing capability. The superior spectral properties and universal compatibility with any primer sequence provided by ET cassettes will make future multiplex construction more facile and straightforward. The pairing of ET cassette technology with the muCAE system illustrates not only an enhanced STR typing platform, but a significant step toward a higher-efficiency forensic laboratory enabled by better chemistry and microfluidics.  相似文献   

3.
The amplification of target DNA by the polymerase chain reaction (PCR) produces copies which may contain errors. Two sources of errors are associated with the PCR process: (1) editing errors that occur during DNA polymerase-catalyzed enzymatic copying and (2) errors due to DNA thermal damage. In this study a quantitative model of error frequencies is proposed and the role of reaction conditions is investigated. The errors which are ascribed to the polymerase depend on the efficiency of its editing function as well as the reaction conditions; specifically the temperature and the dNTP pool composition. Thermally induced errors stem mostly from three sources: A+G depurination, oxidative damage of guanine to 8-oxoG and cytosine deamination to uracil. The post-PCR modifications of sequences are primarily due to exposure of nucleic acids to elevated temperatures, especially if the DNA is in a single-stranded form. The proposed quantitative model predicts the accumulation of errors over the course of a PCR cycle. Thermal damage contributes significantly to the total errors; therefore consideration must be given to thermal management of the PCR process.  相似文献   

4.
《Electrophoresis》2018,39(12):1466-1473
Massively parallel sequencing (MPS) technologies, also termed as next‐generation sequencing (NGS), are becoming increasingly popular in study of short tandem repeats (STR). However, current library preparation methods are usually based on ligation or two‐round PCR that requires more steps, making it time‐consuming (about 2 days), laborious and expensive. In this study, a 16‐plex STR typing system was designed with fusion primer strategy based on the Ion Torrent S5 XL platform which could effectively resolve the above challenges for forensic DNA database‐type samples (bloodstains, saliva stains, etc.). The efficiency of this system was tested in 253 Han Chinese participants. The libraries were prepared without DNA isolation and adapter ligation, and the whole process only required approximately 5 h. The proportion of thoroughly genotyped samples in which all the 16 loci were successfully genotyped was 86% (220/256). Of the samples, 99.7% showed 100% concordance between NGS‐based STR typing and capillary electrophoresis (CE)‐based STR typing. The inconsistency might have been caused by off‐ladder alleles and mutations in primer binding sites. Overall, this panel enabled the large‐scale genotyping of the DNA samples with controlled quality and quantity because it is a simple, operation‐friendly process flow that saves labor, time and costs.  相似文献   

5.
DNA analysis of degraded samples and low-copy number DNA derived from skeletal remains, one of the most challenging forensic tasks, is common in disaster victim identification and genetic analysis of historical materials. Massively parallel sequencing (MPS) is a useful technique for STR analysis that enables the sequencing of smaller amplicons compared with conventional capillary electrophoresis (CE), which is valuable for the analysis of degraded DNA. In this study, 92 samples of human skeletal remains (70+ years postmortem) were tested using an in-house MPS-STR system designed for the analysis of degraded DNA. Multiple intrinsic factors of DNA from skeletal remains that affect STR typing were assessed. The recovery of STR alleles was influenced more by DNA input amount for amplification rather than DNA degradation, which may be attributed from the high quantity and quality of libraries prepared for MPS run. In addition, the higher success rate of STR typing was achieved using the MPS-STR system compared with a commercial CE-STR system by providing smaller sized fragments for amplification. The results can provide constructive information for the analysis of degraded sample, and this MPS-STR system will contribute in forensic application with regard to skeletal remain sample investigation.  相似文献   

6.
Polymerase chain reaction (PCR) direct sequence analysis was performed on aged forensic samples, six or thirteen years old. This method allowed unambiguous genetic typing, but PCR products from such samples showed several artifacts. Control samples generated sequence ambiguities at a frequency of 1 in 567 bases, but the aged samples had an error frequency about 30-fold higher. In order to study the molecular composition of these aged DNA samples, reversed-phase high performance liquid chromatography (HPLC) was performed. Reduced amounts of the four DNA bases were observed and anomalous peaks were found. These peaks were analyzed by ionization mass spectrometry and identified as molecular products of DNA oxidation. The frequency of sequencing artifacts was found to be proportional to the decay of the PCR templates. Although PCR fidelity is a relevant concern in the forensic analysis of damaged samples, our data indicate that the risk of mistyping is circumventable by sequencing both strands and by performing replicate amplifications from the same PCR template.  相似文献   

7.
Gradient elution isotachophoresis (GEITP) was demonstrated for DNA purification, concentration, and quantification from crude samples, represented here by soiled buccal swabs, with minimal sample preparation prior to human identification using STR analysis. During GEITP, an electric field applied across leading and trailing electrolyte solutions resulted in isotachophoretic focusing of DNA at the interface between these solutions, while a pressure‐driven counterflow controlled the movement of the interface from the sample reservoir into a microfluidic capillary. This counterflow also prevented particulates from fouling or clogging the capillary and reduced or eliminated contamination of the delivered DNA by PCR inhibitors. On‐line DNA quantification using laser‐induced fluorescence compared favorably with quantitative PCR measurements and potentially eliminates the need for quantitative PCR prior to STR analysis. GEITP promises to address the need for a rapid and robust method to deliver DNA from crude samples to aid the forensic community in human identification.  相似文献   

8.
Improved STR typing of telogen hair root and hair shaft DNA   总被引:1,自引:0,他引:1  
Today the STR typing of telogen hair and hair shafts is regarded as a challenge. The small DNA quantity in the hair is highly degraded. Another problem are PCR inhibitors in the hair. In particular hair pigments, the melanins, are known to inhibit PCR. Hairs are exposed to sunlight and partly to chemical oxidation processes, which make them even more difficult to analyze. To increase the chances of a correct typing of hair, the small amount of DNA must be successfully isolated and the inhibitors have to be removed or neutralized. Furthermore, miniSTR typing improves the analysis of stains with degraded DNA like it is the case with hair. We introduce a nonorganic extraction method and in addition a miniSTR concept which is promising in typing stains with little and degraded DNA, especially hairs. The miniSTR concept including five database STRs (SE33, VWA, TH01, FGA, D3S1358) and the gender typing system Amelogenin was optimized for the amplification of hair DNA. Compared to commercial STR kits, this approach resulted in considerably higher success rates.  相似文献   

9.
Lab‐on‐a‐chip provides an ideal platform for short tandem repeat (STR) genotyping due to its intrinsic low sample consumption, rapid analysis, and high‐throughput capability. One of the challenges, however, in the forensic human identification on the microdevice is the detection sensitivity derived from the nanoliter volume sample handling. To overcome such a sensitivity issue, here we developed a sample stacking CE microdevice for mini Y STR genotyping. The mini Y STR includes redesigned primer sequences to generate smaller‐sized PCR amplicons to enhance the PCR efficiency and the success rate for a low copy number and degraded DNA. The mini Y STR amplicons occupied in the 5‐ and 10‐mm stacking microchannels are preconcentrated efficiently in a defined narrow region through the optimized sample stacking CE scheme, resulting in more than tenfold improved fluorescence peak intensities compared with that of a conventional cross‐injection microcapillary electrophoresis method. Such signal enhancement allows us to successfully analyze the Y STR typing with only 25 pg of male genomic DNA, with high background of female genomic DNA, and with highly degraded male genomic DNA. The combination of the mini Y STR system with the novel sample stacking CE microdevice provides the highly sensitive Y STR typing on a chip, making it promising to perform high‐performance on‐site forensic human identification.  相似文献   

10.
Short tandem repeat (STR) loci, widely used as genetic markers in disease diagnostic studies and human identity applications, are traditionally genotyped through comparison of allele sizes to a sequenced allelic ladder. Allelic ladders permit a floating bin allele calling method to be utilized, which enables reliable allele calling across laboratories, instrument platforms, and electrophoretic conditions. Precise sizing methods for STR allele calling involving fixed bins can also be used when a high degree of precision has been demonstrated within an instrument platform and a set of electrophoretic conditions. An alternative method for reliable genotyping of STR markers, locus-specific brackets (LSBs), is introduced here. LSBs are artificial alleles created through molecular biology manipulations to be shorter or longer than alleles commonly seen in populations under investigation. The size and repeat number of measured alleles are interpolated between the two LSB products that are mixed with the polymerase chain reaction-amplified STR alleles. The advantages and limitations of the LSB approach are described along with a concordance study between the LSB typing approach and other STR typing methods. Complete agreement was observed with 162 samples studied at 5 Y-chromosome loci.  相似文献   

11.
The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence. DNA typing now plays a critical role within the criminal justice system, but one of the limiting factors with the technology is that DNA isolated from biological stains recovered from the crime scene is sometimes so damaged as to be intractable to analysis. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary. As a model for DNA damage assessment in biological stains recovered from crime scenes, we have subjected human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. It was possible to damage the DNA sufficiently in a bloodstain to cause a standard autosomal short tandem repeat (STR) profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect bipyrimidine photoproducts (BPPPs), single- and double-strand breaks, and DNA–DNA crosslinks, produced some unexpected findings. Contrary to the situation with living tissues or cells in culture, the predominant UVC-induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major form of UVC damage causing genetic profile loss appeared to be single-strand breaks. It was not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed. We demonstrate here that a significant measure of protection against UVC-mediated genetic profile loss in dried biological stain material is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu.  相似文献   

12.
We evaluate the usefulness of a commercially available microchip CE (MCE) device in different genetic identification studies performed with mitochondrial DNA (mtDNA) targets, including the haplotype analysis of HVR1 and HVR2 and the study of interspecies diversity of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes in forensic and ancient DNA samples. The MCE commercial system tested in this study proved to be a fast and sensitive detection method of length heteroplasmy in cytosine stretches produced by 16 189T>C transitions in HVR1 and by 309.1 and 309.2 C-insertions in HVR2. Moreover, the quantitative analysis of PCR amplicons performed by LIF allowed normalizing the amplicon input in the sequencing reactions, improving the overall quality of sequence data. These quantitative data in combination with the quantification of genomic mtDNA by real-time PCR has been successfully used to evaluate the PCR efficiency and detection limit of full sequencing methods of different mtDNA targets. The quantification of amplicons also provided a method for the rapid evaluation of PCR efficiency of multiplex-PCR versus singleplex-PCR to amplify short HV1 amplicons (around 100 bp) from severely degraded ancient DNA samples. The combination of human-specific (Cyt b) and universal (16S rRNA) mtDNA primer sets in a single PCR reaction followed by MCE detection offers a very rapid and simple screening test to differentiate between human and nonhuman hair forensic samples. This method was also very efficient with degraded DNA templates from forensic hair and bone samples, because of its applicability to detect small amplicon sizes. Future possibilities of MCE in forensic DNA typing, including nuclear STRs and SNP profiling are suggested.  相似文献   

13.
Five polymerase chain reaction (PCR) products which could not be reliably typed by allele-specific oligonucleotide (ASO) probing at the human leukocyte antigen (HLA) DQA1 locus were analyzed by polyacrylamide gel electrophoresis and direct sequencing. The first method revealed the preferential amplification of only one of the two alleles in two cases. Direct sequencing of PCR products allowed unambiguous genetic typing but a high number of artifacts was observed. Several of these artifacts occurred in the sequences recognized by the ASOs. This finding provides an explanation for the mistyping in the ASO probing procedure because Taq polymerase errors both created new genetic specificities and eliminated site-specific polymorphisms. Reversed-phase HPLC-MS of the five forensic templates showed a high degree of DNA damage. These data together indicate that the risk of mistyping when using the ASO probing procedure cannot be neglected in the forensic analysis of damaged DNA samples.  相似文献   

14.
The polymerase chain reaction (PCR) is critical for amplification of target sequences of DNA or RNA that have clinical, biological or forensic relevance. While extrinsic Fabry-Perot interferometry (EFPI) has been shown to be adequate for non-contact temperature sensing, the difficulty in defining a reflective surface that is semi-reflective, non-reactive for PCR compatibility and adherent for thermal bonding has limited its exploitation. Through the incorporation of a reflective surface fabricated using a thermally driven self-assembly of a platinum nanoparticle monolayer on the surface of the microfluidic chamber, an enhanced EFPI signal results, allowing for non-contact microfluidic temperature control instrumentation that uses infrared-mediated heating, convective forced-air cooling, and interferometic temperature sensing. The interferometer is originally calibrated with a miniature copper-constantan thermocouple in the PCR chamber resulting in temperature sensitivities of -22.0 to -32.8 nm·°C(-1), depending on the chamber depth. This universal calibration enables accurate temperature control in any device with arbitrary dimensions, thereby allowing versatility in various applications. Uniquely, this non-contact temperature control for PCR thermocycling is applied to the amplification of STR loci for human genetic profiling, where nine STR loci are successfully amplified for human identification using the EFPI-based non-contact thermocycling.  相似文献   

15.
A valveless microdevice has been developed for the integration of solid phase extraction (SPE) and polymerase chain reaction (PCR) on a single chip for the short tandem repeat (STR) analysis of DNA from a biological sample. The device consists of two domains--a SPE domain filled with silica beads as a solid phase and a PCR domain with an ~500 nL reaction chamber. DNA from buccal swabs was purified and amplified using the integrated device and a full STR profile (16 loci) resulted. The 16 loci Identifiler? multiplex amplification was performed using a non-contact infrared (IR)-mediated PCR system built in-house, after syringe-driven SPE, providing an ~80-fold and 2.2-fold reduction in sample and reagent volumes consumed, respectively, as well as an ~5-fold reduction in the overall analysis time in comparison to conventional analysis. Results indicate that the SPE-PCR system can be used for many applications requiring genetic analysis, and the future addition of microchip electrophoresis (ME) to the system would allow for the complete processing of biological samples for forensic STR analysis on a single microdevice.  相似文献   

16.
The recent introduction of polymerase chain reaction (PCR)-massively parallel sequencing (MPS) technologies in forensics has changed the approach to allelic short tandem repeat (STR) typing because sequencing cloned PCR fragments enables alleles with identical molecular weights to be distinguished based on their nucleotide sequences. Therefore, because PCR fidelity mainly depends on template integrity, new technical issues could arise in the interpretation of the results obtained from the degraded samples. In this work, a set of DNA samples degraded in vitro was used to investigate whether PCR-MPS could generate “isometric drop-ins” (IDIs; i.e., molecular products having the same length as the original allele but with a different nucleotide sequence within the repeated units). The Precision ID GlobalFiler NGS STR panel kit was used to analyze 0.5 and 1 ng of mock samples in duplicate tests (for a total of 16 PCR-MPS analyses). As expected, several well-known PCR artifacts (such as allelic dropout, stutters above the threshold) were scored; 95 IDIs with an average occurrence of 5.9 IDIs per test (min: 1, max: 11) were scored as well. In total, IDIs represented one of the most frequent artifacts. The coverage of these IDIs reached up to 981 reads (median: 239 reads), and the ratios with the coverage of the original allele ranged from 0.069 to 7.285 (median: 0.221). In addition, approximately 5.2% of the IDIs showed coverage higher than that of the original allele. Molecular analysis of these artifacts showed that they were generated in 96.8% of cases through a single nucleotide change event, with the C > T transition being the most frequent (85.7%). Thus, in a forensic evaluation of evidence, IDIs may represent an actual issue, particularly when DNA mixtures need to be interpreted because they could mislead the operator regarding the number of contributors. Overall, the molecular features of the IDIs described in this work, as well as the performance of duplicate tests, may be useful tools for managing this new class of artifacts otherwise not detected by capillary electrophoresis technology.  相似文献   

17.
For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.  相似文献   

18.
Short tandem repeats (STRs), known as microsatellites, are one of the most informative genetic markers for characterizing biological materials. Because of the relatively small size of STR alleles (generally 100-350 nucleotides), amplification by polymerase chain reaction (PCR) is relatively easy, affording a high sensitivity of detection. In addition, STR loci can be amplified simultaneously in a multiplex PCR. Thus, substantial information can be obtained in a single analysis with the benefits of using less template DNA, reducing labor, and reducing the contamination. We investigated 14 STR loci in a Japanese population living in Sendai by three multiplex PCR kits, GenePrint PowerPlex 1.1 and 2.2. Fluorescent STR System (Promega, Madison, WI, USA) and AmpF/STR Profiler (Perkin-Elmer, Norwalk, CT, USA). Genomic DNA was extracted using sodium dodecyl sulfate (SDS) proteinase K or Chelex 100 treatment followed by the phenol/chloroform extraction. PCR was performed according to the manufacturer's protocols. Electrophoresis was carried out on an ABI 377 sequencer and the alleles were determined by GeneScan 2.0.2 software (Perkin-Elmer). In 14 STRs loci, statistical parameters indicated a relatively high rate, and no significant deviation from Hardy-Weinberg equilibrium was detected. We apply this STR system to paternity testing and forensic casework, e.g., personal identification in rape cases. This system is an effective tool in the forensic sciences to obtain information on individual identification.  相似文献   

19.
本文以野生型的乙型肝炎病毒(HBV)核酸片段为研究对象,利用无标记的分子信标及核酸染料SYBR Green I,建立了一种高灵敏、高选择性的特定序列核酸检测方法.在优化条件下,目标DNA浓度为4×10-11~400×10-11 mol/L之间时,SYBR Green I的荧光强度(ΔI)与目标DNA的浓度(C)具有良好的线性关系,其拟合的回归方程为ΔI=1.9556 C+31.4659(R2=0.9956),方法检测限(3ζ)为2×10-11 mol/L.该方法操作简单、检测速度快、灵敏度高、重现性好、检出限低.利用该方法,结合不对称PCR技术,实现了对HBV的定量检测.  相似文献   

20.
For over 10 years, quantitative PCR (qPCR) for DNA quantitation has been reported in forensics. However, assays have not been described for small qPCR platforms. Thus, technological advancement is not always implemented in small forensic genetics laboratories. A duplex qPCR assay is reported, using a StepOne instrument and targeting a short and a long human DNA region. This study was performed according to international validation guidelines, including sensitivity, repeatability, reproducibility, precision, accuracy, contamination assessment, known and case-type samples, and degradation studies. Characterization of the genetic markers, species specificity, and population studies had already been conducted. Moreover, case-type samples were quantified, amplified using commercial kits and the number of alleles detected was recorded. Sensitivity was shown to be 10 pg/µL. Standard curve replicates demonstrated the assay is accurate, precise, as well as fairly repeatable and reproducible. The NGM Detect kit was shown to yield higher peaks than Identifiler Plus and NGM Select for degraded samples. Moreover, quality sensors were always present and proved useful. The quantification values of the large target showed a correlation with the number of alleles detected in the STR profiles for known and casework samples. The degradation index was shown to be informative, with a value of 10 or higher indicating dropout. It is suggested that after quantitation, samples with low or degraded DNA be amplified using newer amplification kits containing quality sensors to confirm that the low-quality profile was not affected by inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号