首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural nitrogen isotopic composition (δ15N) of suspended particulate organic matter (POM) and nitrogen fixation rates via 15N2 assay were measured in surface waters along 120° E from 30° N to 30° S in the Asian marginal seas (the East/South China Seas and the Sulu/Celebes/Java Seas) and the northeastern Indian Ocean in November–December 2005 and March 2006. The POM δ15N values ranged from?1.8 to 12.2‰ with an average of 3.6‰ and showed a decreasing trend towards the equator in both hemispheres. In parallel, the measured N2 fixation rates showed an increase from the subtropical to the tropical seas. This implies that a higher contribution of 15N-depleted POM was derived from enhanced N2 fixation. Water temperature and the stability of water column were partly responsible for the observed variations in nitrogen fixation. The large-scale spatial variations in suspended POM δ15N and N2 fixation rates suggest that the suspended POM δ15N may be a potential indicator of nitrogen fixation in surface waters in tropical/subtropical seas.  相似文献   

2.
A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the 15N and 13C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the δ15N values in four legume species (Acacia cyanophylla,?1.73 ‰ Acacia farnesiana,?0.55 ‰ Prosopis juliflora,?1.64 ‰; and Medicago arborea,+1.6 \textperthousand) and one actinorhizal plant (Elaeagnus angustifolia,?0.46 to?2.1 ‰) were found to be close to that of the atmospheric value pointing to a major contribution of N2 fixing in these species; whereas, δ15N values of the non-fixing plant species were highly positive. δ13C ‰; in leaves of the C3 plants were found to be affected by plant species, ranging from a minimum of?28.67 ‰; to a maximum of?23 ‰. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil), a higher carbon discrimination value (Δ13C ‰) was exhibited by P. juliflora, indicating that the latter is a salt tolerant species; however, its δ15N was highly positive (+7.03 ‰) suggesting a negligible contribution of the fixed N2. Hence, it was concluded that the enhancement of N2 fixation might be achieved by selection of salt-tolerant Rhizobium strains.  相似文献   

3.
A combination of C/N ratios, δ13C and δ15N values in suspended matter was used to examine the seasonal (late summer 2004 and spring 2005) relationship with hydrological characteristics of the River Sava watershed in Slovenia. The values of C/N ratios range from 1.2 to 19.1, δ13C values range from?29.2 to?23.0 ‰ and δ15N values from 0.5 to 16.7 ‰ and indicate that the samples are a mixture of two end members: modern soils and plant litter. A simple mixing model was used to indicate that soil organic carbon prevails over plant litter and contributes more than 50% of suspended material. The calculated annual particulate organic carbon flux is estimated as 5.2×1010 g C/year, the annual particulate nitrogen flux 8.5×109 g N/year and the total suspended solid flux is estimated to be 1.3×1012 g/year. Anthropogenic impact was detected only in a tributary stream of the River Sava, which is located in an agriculture–industrial area and is reflected in higher δ15N values in suspended matter and high nitrate concentrations in the late summer season.  相似文献   

4.
The variation of the natural 15N abundance is often used to evaluate the origin of nitrogen or the pathways of N input into ecosystems. We tried to use this approach to assess the main input pathways of nitrogen into the sand dune area of the north-western Negev Desert (Israel). The following two pathways are the main sources for nitrogen input into the system:
  1. Biological fixation of atmospheric nitrogen by cyanobacteria present in biological crusts and by N2-fixing vascular plants (e.g. the shrub Retama raetam);

  2. Atmospheric input of nitrogen by wet deposition with rainfall, dry deposition of dust containing N compounds, and gaseous deposition.

Samples were taken from selected environmental compartments such as biological crusts, sand underneath these crusts (down to a depth of 90?cm), N2-fixing and non-N2-fixing plants, atmospheric bulk deposition as well as soil from arable land north of the sandy area in three field campaigns in March 1998, 1999 and 2000. The δ15N values measured were in the following ranges: grass ?2.5‰ to +1.5‰; R. reatam: +0.5‰ to +4.5‰; non-N2-fixing shrubs +1‰ to +7‰; sand beneath the biological crusts +4‰ to +20‰ (soil depth 2–90?cm); and arable land to the north up to 10‰. Thus, the natural 15N abundance of the different N pools varies significantly. Accordingly, it should be feasible to assess different input pathways from the various 15N abundances of nitrogen. For example, the biological N fixation rates of the Fabaceae shrub R. reatam from the 15N abundances measured were calculated to be 46–86% of biomass N derived from the atmosphere. The biological crusts themselves generally show slight negative 15N values (?3‰ to ?0.5‰), which can be explained by biological N fixation. However, areas with a high share of lichens, which are unable to fix atmospheric nitrogen, show very negative values down to ?10‰. The atmospheric N bulk deposition, which amounts to 1.9–3.8?kg?N/ha?yr, has a 15N abundance between 4.4‰ and 11.6‰ and is likely to be caused by dust from the arable land to the north. Thus, it cannot be responsible for the very negative values of lichens measured either. There must be an additional N input from the atmosphere with negative δ15N values, e.g. gaseous N forms (NO x , NH3). To explain these conflicting findings, detailed information is still needed on the wet, particulate and gaseous atmospheric deposition of nitrogen.  相似文献   

5.
Abstract

Carbon and nitrogen stable isotope compositions of organic matter, TOC/TN ratio, and manganese concentration in a sediment core that was collected in northern part of Lake Baikal (VER92ST10-GC2, water depth at 922 m, about 3 m long) were investigated to elucidate the origin of the sedimentary organic matter and its associated environmental factors.

The sediment core was composed of mainly two parts: turbidite sections and other sections. Constant δ13C and δ15N values of the turbidite sections were observed (- 26.8 ±0.2 ‰ for δ13C and 3.2 ± 0.1 ‰ for δ15N) throughout the core. The higher δ13C in turbidite sections (about - 27 ‰) than that of the other sections (- 31 to - 29 ‰) was clearly observed, and δ15N was different between turbidite sections (about 3‰) and other sections (3 to 5 ‰). δ13C of other sections was close to that of pelagic phytoplankton, indicating that sediment other than turbidite sections is composed of autochthonous components. The variation of stable isotopes in other sections may be possibly caused by the changes in either phytoplankton growth rate or contribution ratios of terrestrial to aquatic plants for δ13C. Either denitrification or fluctuation of δ15N in pelagic phytoplankton can be the cause of variable δ15N in other sections.  相似文献   

6.
Temporal variations in N concentration and δ(15)N value of annual tree rings (1 year of time resolution) of two Japanese Black Pine (Pinus thunbergii) and three Japanese Red Pine (Pinus densiflora) trees under current breeding activity of the Great Cormorant (Pharacrocorax carbo) and the Black-tailed Gull (Larus crassirostris), respectively, in central and northeastern Japan were studied. Both species from control sites where no avian input occurs show negative values (δ(15)N = around -4 ‰ to -2 ‰) which are common among higher plants growing under high rainfall regimes. The δ(15)N values of P. densiflora show uniformly positive values several years before and after the breeding event, indicating N translocation that moved the absorbed N of a given growth year to tree rings of the previous year while a clear historical value of soil N dynamics was kept intact in the annual rings of P. thunbergii. Long-term N trends inferred from tree rings must take into account tree species with limited translocation rates that can retain actual N annual acquisition.  相似文献   

7.
During two independent cruises in the north-eastern tropical Atlantic Ocean, we applied two different approaches to investigate the impact of diazotrophy on nitrogen stable isotope signatures in nitrate and particulate organic nitrogen (PON) of the food-web constituents. The first approach, used during the Poseidon cruise 348 in the Mauritanian upwelling, investigated the long-term influence of diazotrophy on the natural abundance of δ15N-NO? 3 and PON. The second approach, adopted during the Cape Verde field cruise, applied stable isotope tracer addition experiments. These served to determine the instantaneous transfer of diazotrophic N to the higher trophic level. Both approaches showed that N2 fixation was compatible with the pattern and the magnitude of the isotopic depletion of dissolved NO? 3 during the Mauritanian upwelling cruise, as well as PON in zooplankton and phytoplankton during the Cape Verde cruises. An N-budget using 15N incorporation rates and diazotrophic N2 fixation rates showed that 6 % of the daily N2 fixation was potentially taken up by the mesozooplankton community. Direct grazing accounted for 56 % of gross mesozooplanktonic N incorporation, while 46 % occurred due to channelling through the microbial loop.  相似文献   

8.
We first measured the δ(13)C and δ(15)N values of root holoparasite Cynomorium songaricum and its hosts from 19 sites across four provinces in northwest China, in an attempt to investigate their nutritional relationship at the Tibetan plateau and the surrounding Gobi desert. Our study showed that the δ(13)C of C. songaricum closely mirrored the values of its hosts, Nitraria tangutorum and N. sibirica across all sampling sites. C. songaricum was significantly depleted in (13)C compared to host plants at the Tibetan plateau, showing an average parasite/host δ(13)C difference of-0.6?‰. In contrast, (15)N of C. songaricum was significantly enriched by+1.3?‰ compared to the hosts, implying that these holoparasites had other nitrogen resources. Although no difference in the δ(13)C and δ(15)N values between holoparasites and hosts was detected, the δ(13)C and δ(15)N values of holoparasites were significantly correlated with those of their hosts at the Gobi desert. The δ(13)C versus δ(15)N values were significantly but negatively correlated for the hosts; however, holoparasite/host variation in δ(13)C was not correlated with the variation in δ(15)N. The δ(13)C versus δ(15)N values were negatively correlated in C. songaricum, and this relationship tended to be magnified along the increasing elevations independent of the host plants. C. songaricum at the Tibetan plateau exhibited different δ(13)C and δ(15)N signatures compared with those at the Gobi desert. Furthermore, both δ(13)C and δ(15)N values of C. songaricum and its host plants in salt marshes at the Tibetan plateau were different from those in sand sites at the Tibetan plateau and the Gobi desert. Our results indicate that the isotopic difference depends on the different altitudes and habitats and is host-specific.  相似文献   

9.
Foliar δ15N values are useful to calculate N2 fixation and N losses from ecosystems. However, a definite pattern among vegetation types is not recognised and few data are available for semi-arid areas. We sampled four sites in the Brazilian caatinga, along a water availability gradient. Sites with lower annual rainfall (700 mm) but more uniform distribution (six months) had δ15N values of 9.4 and 10.1 ‰, among the highest already reported, and significantly greater than those (6.5 and 6.3 ‰) of sites with higher rainfall (800 mm) but less uniform distribution (three months). There were no significant differences at each site among species or between non-fixing legume and non-legume species, in spite of the higher N content of the first group. Therefore, they constitute ideal reference plants in estimations of legume N2 fixation. The higher values could result from higher losses of 15N depleted gases or lower losses of enriched 15N material.  相似文献   

10.
Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.  相似文献   

11.
Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ15N (per mil deviation of 15N/14N, relative to atmospheric nitrogen=0 ‰) values (diet–consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ15N=~+2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet–consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet–consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.  相似文献   

12.
High and fluctuating salinity is characteristic for coastal salt marshes, which strongly affect the physiology of halophytes consequently resulting in changes in stable isotope distribution. The natural abundance of stable isotopes (δ13C and δ15N) of the halophyte plant Salicornia brachiata and physico-chemical characteristics of soils were analysed in order to investigate the relationship of stable isotope distribution in different populations in a growing period in the coastal area of Gujarat, India. Aboveground and belowground biomass of S. brachiata was collected from six different populations at five times (September 2014, November 2014, January 2015, March 2015 and May 2015). The δ13C values in aboveground (?30.8 to ?23.6?‰, average: ?26.6?±?0.4?‰) and belowground biomass (?30.0 to ?23.1?‰, average: ?26.3?±?0.4?‰) were similar. The δ13C values were positively correlated with soil salinity and Na concentration, and negatively correlated with soil mineral nitrogen. The δ15N values of aboveground (6.7–16.1?‰, average: 9.6?±?0.4?‰) were comparatively higher than belowground biomass (5.4–13.2?‰, average: 7.8?±?0.3?‰). The δ15N values were negatively correlated with soil available P. We conclude that the variation in δ13C values of S. brachiata was possibly caused by soil salinity (associated Na content) and N limitation which demonstrates the potential of δ13C as an indicator of stress in plants.  相似文献   

13.
Population pressure increasingly endangers high-mountain ecosystems such as the pastures in the Eastern Pamirs and the mountain forests on Mt. Kilimanjaro. At the same time, these ecosystems constitute the economic basis for millions of people living there. In our study, we, therefore, aimed at characterising the land-use effects on soil degradation and N-cycling by determining the natural abundance of (15)N. A short review displays that δ(15)N of plant-soil systems may often serve as an integrated indicator of N-cycles with more positive δ(15)N values pointing towards N-losses. Results for the high-mountain pastures in the Eastern Pamirs show that intensively grazed pastures are significantly enriched in (15)N compared to the less-exploited pastures by 3.5 ‰, on average. This can be attributed to soil organic matter degradation, volatile nitrogen losses, nitrogen leaching and a general opening of the N-cycle. Similarly, the intensively degraded savanna soils, the cultivated soils and the soils under disturbed forests on the foothill of Mt. Kilimanjaro reveal very positive δ(15)N values around 6.5 ‰. In contrast, the undisturbed forest soils in the montane zone are more depleted in (15)N, indicating that here the N-cycle is relatively closed. However, significantly higher δ(15)N values characterise the upper montane forest zone at the transition to the subalpine zone. We suggest that this reflects N-losses by the recently monitored and climate change and antropogenically induced increasing fire frequency pushing the upper montane rainforest boundary rapidly downhill. Overall, we conclude that the analysis of the (15)N natural abundance in high-mountain ecosystems is a purposeful tool for detecting land-use- or climate change-induced soil degradation and N-cycle opening.  相似文献   

14.
Temporal variations in N concentration and δ15N value of annual tree rings (1 year of time resolution) of two Japanese Black Pine (Pinus thunbergii) and three Japanese Red Pine (Pinus densiflora) trees under current breeding activity of the Great Cormorant (Pharacrocorax carbo) and the Black-tailed Gull (Larus crassirostris), respectively, in central and northeastern Japan were studied. Both species from control sites where no avian input occurs show negative values (δ15N = around?4 ‰ to?2 ‰) which are common among higher plants growing under high rainfall regimes. The δ15N values of P. densiflora show uniformly positive values several years before and after the breeding event, indicating N translocation that moved the absorbed N of a given growth year to tree rings of the previous year while a clear historical value of soil N dynamics was kept intact in the annual rings of P. thunbergii. Long-term N trends inferred from tree rings must take into account tree species with limited translocation rates that can retain actual N annual acquisition.  相似文献   

15.
This paper presents the results of hydrological, physicochemical, biological, and isotopic investigations of the Danube River along the stretch through Serbian territory conducted during four campaigns in September and November 2007, September 2008 and April 2009. The stable isotope values exhibited significant changes both in the Danube (?10.7 to?9.5‰ for δ18O and?73.7 to?67.1 ‰ for δ2H) and in its tributaries (?9.1 to?8.5‰ for δ18O and?69.4 to?59.4‰ for δ2H) depending on the time of survey, which could be partly attributed to the influences of seasonal effects. Results emphasise the dominant role of tributaries inflows from aquifers along the Danube. The very narrow range of δ13CPOC (from?28.9 to?27.4 ‰) was associated with relatively high C/N ratios (C/N>9), and together with δ15NTPN values, the date suggested that, in early spring, a major fraction of particulate organic matter was derived from allochthonous matter. An orthogonal varimax rotation of the principal components analysis identified four latent factors (‘mineral related’, ‘biological’, ‘hardness’, and ‘soil inlets’) which are responsible for the data structure covering 79% of the observed variations among the variables studied. A reliable grouping of samples with respect to the season was found.  相似文献   

16.
Abstract Locust nymphs were raised from hatching to adult locusts on either seedling wheat (C(3)) or maize (C(4)), to determine whether relative enrichments/depletions of (15)N and (13)C within body tissues are influenced by diet. The maize contained less hexose sugars and protein per gram than wheat. The isotopic spacing between the food and the whole insect was found to differ between the two diets. The lower quality maize diet showed an overall +5.1‰ enrichment in δ(15)N compared to + 2.8‰ for wheat, possibly due to increased fractionation due to protein recycling. The maize diet resulted in increased depletion in lipid and trehalose and depletion in chitin relative to diet. The results for both δ(15)N and δ(13)C suggest that substrate recycling was occurring on the low quality maize diet. Therefore diet quality determines the enrichment/depletion in δ(15)N and δ(13)C within organisms.  相似文献   

17.
When a diet switch results in a change in dietary isotopic values, isotope ratios of the consumer's tissues will change until a new equilibrium is reached. This change is generally best described by an exponential decay curve. Indeed, after a diet switch in captive red knot shorebirds (Calidris canutus islandica), the depletion of 13C in both blood cells and plasma followed an exponential decay curve. Surprisingly, the diet switch with a dietary 15N/14N ratio (δ15N) change from 11.4 to 8.8 ‰ had little effect on δ15N in the same tissues. The diet-plasma and diet-cellular discrimination factors of 15N with the initial diet were very low (0.5 and 0.2 ‰, respectively). δ15N in blood cells and plasma decreased linearly with increasing body mass, explaining about 40 % of the variation in δ15N. δ15N in plasma also decreased with increasing body-mass change (r 2=.07). This suggests that the unusual variation in δ15N with time after the diet switch was due to interferences with simultaneous changes in body-protein turnover.  相似文献   

18.
We have applied both palynological and carbon and nitrogen isotopic analyses of PM10 (particulate matter with a diameter of 10?μm or less) to trace its origin and to assess the anthropogenic impact for the area under study. The PM10 samples were collected in Wroc?aw (SW Poland) by the Regional Inspectorate for Environment Protection during the year 2007. The usefulness of the palynological observations in the case of PM10 is much lower than that for total suspended particles due to the resolution of absorbed particles, but is still helpful for distinguishing C(3)/C(4) plants that indicate long-distance transport of pollutants. The δ(13)C(PM10) values varied seasonally from-26.9 to-25.1‰. The δ(15)N(PM10) values showed chaotic fluctuations and varied from 5.0 to 13.7‰. Our results indicated that during the heating period, the PM10 particles in Wroc?aw are derived mainly from local home heaters, whereas in the growing period, PM10 particles are derived from local transport and are partially generated by the industrial application of coal combustion outside the city of Wroc?aw.  相似文献   

19.
Abstract

Apple snails Pomacea lineata (SPIX 1827) are widespread in the tropical regions of Brazil as well as in the Pantanal wetland of Mato Grosso in the western part of the country. They have a key position in the Pantanal food web and serve as food for many animals e.g. fishes, birds, and caimans. However, little is known about their feeding preferences and growth rates. Stable isotopes have been used successfully on numerous studies as food source indicator. Therefore, the δ15N and δ13C values of snails from 0.45 to 3.03cm in length, which were collected in the rainy season from March through May, were analyzed. Snails signatures revealed ambiguous evidence for food preferences. δ15N and δ13C values ranged between ?2.8 and 12.4‰ and between ?24.2 and ?16.4‰, respectively. This range of values mirrors the highly variable isotope values of possible food sources comprising C3 and C4 macrophytes. To test whether all common food sources were similarly assimilated, feeding experiments with different diets were conducted. Snail eggs were reared in tanks and offered different but single plants. Snails fed different diets and δ13C values of the food were reflected in the animal tissue. Growth varied considerably in experiments with different diets indicating the preference for certain food sources. Also, the fractionation of nitrogen isotopes between food and animal varied from 0.1 to 17.0‰. The results are explained by different feeding habits, and it is supposed that animals fed either on the plant itself or on bacteria mats growing in the tanks. In an additional experiment juvenile snails were offered one single food with a distinctive C4 grass signature. These snails did not grow detectably, but nevertheless isotope signatures approached to values of the diet.  相似文献   

20.
Abstract

Natural nitrogen isotope ratios were measured in different compartments (needles or leaves and twigs of different age classes and crown positions, roots and soil of different horizons) of spruce (Picea abies), larch (Larix decidua) and beech (Fagus sylvatica) trees in an 11-year-old mixed stand in the Fichtelgebirge, NE Bavaria, Germany. In addition, samples of understorey vegetation (mainly ericaceous shrubs and grass) and of ectomycorrhizal and saprophytic fungi were analyzed. The δ15N values found for all samples ranged between ?7.5 and + 4.5‰. No significant differences were found for the nitrogen isotope ratios of the three tree species despite of their evergreen versus deciduous foliage and despite of their different rooting depth. Ericaceous shrubs had the most negative and fungi and soil from the mineral horizon the most positive δ15N values. Positive δ15N values of the fungi indicate their ability to utilize organic soil nitrogen, but the data do not unequivocally show that plants forming mycorrhizas profit from this organic nitrogen source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号