共查询到20条相似文献,搜索用时 15 毫秒
1.
Bandt-Pompe approach to the classical-quantum transition 总被引:1,自引:0,他引:1
A.M. Kowalski 《Physica D: Nonlinear Phenomena》2007,233(1):21-31
By regarding the celebrated classical-quantum transition problem as one pertaining to the domain of dynamic systems’ theory, we present a discussion that exhibits the superiority of the Bandt-Pompe approach to the extraction of a probability distribution from time series’ values. 相似文献
2.
An investigation is undertaken of semiclassical time-evolutions and their classical limit with the intent of getting insights into the classical–quantum frontier. We deal with a system that represents the interaction between matter and a given field, and our main research tool is the so-called q-complexity quantifier, for which two different versions are considered. The probability distribution associated with the time-evolution process is determined by recourse to the Bandt–Pompe symbolic technique [C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series, Phys. Rev. Lett. 88 (2002) 174102:1–174102:4]. The most salient details of the quantum–classical transition turn out to be described not only well, but also in a better fashion than that of previous literature. 相似文献
3.
Fisher information, Rényi entropy power and Fisher–Rényi information product are presented for the Dicke model. There is a quantum phase transition in this quantum optical model. It is pointed out that there is an abrupt change in the Fisher information, Rényi entropy power, the Fisher, Shannon and Rényi lengths at the transition point. It is found that these quantities diverge as the characteristic length: |λc−λ|−1/4 around the critical value of the coupling strength λc for any value of the parameter β. 相似文献
4.
Quantum Fisher information is related to the problem of parameter estimation.Recently,a criterion has been proposed for entanglement in multipartite systems based on quantum Fisher information.This paper studies the behaviours of quantum Fisher information in the quantum kicked top model,whose classical correspondence can be chaotic.It finds that,first,detected by quantum Fisher information,the quantum kicked top is entangled whether the system is in chaotic or in regular case.Secondly,the quantum Fisher information is larger in chaotic case than that in regular case,which means,the system is more sensitive in the chaotic case. 相似文献
5.
More recently, K. Berrada [Annals of Physics 340 (2014) 60-69] [1] studied the geometric phase of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system, and collapse and revival phenomena were found for large class of states. In this paper, using this noise effect, we study the quantum fisher information (QFI) for a two-level atom system driven by a phase noise laser under non-Markovian dynamics. A new quantity, called QFI flow is used to characterize the damping effect and unveil a fundamental connection between non-Markovian behavior and dynamics of system–environment correlations under phase noise laser. It is shown that QFI flow has disappeared suddenly followed by a sudden birth depending on the kind of the environment damping. QFI flow provides an indicator to characterize the dissipative quantum system’s decoherence by analyzing the behavior of the dynamical non-Markovian coefficients. 相似文献
6.
Escort distributions are a well established but (for physicists) a relatively new concept that is rapidly gaining wide acceptance in world. In this work we wish to revisit the concept within the strictures of the celebrated semiclassical Husimi distributions (HDs) and thereby investigate the possibility of extracting new semiclassical information contained, not in the HD themselves, but in their associated escort Husimi distributions. We will also establish relations, for various information measures, between their deformed versions [J. Naudts, Physica A 316 (2002) 323] and those built up with escort HDs. Bounds on the concomitant power exponents will be determined. 相似文献
7.
8.
9.
Fisher information, Shannon information entropy and Statistical Complexity are calculated for the interface of a normal metal and a superconductor, as a function of the temperature for several materials. The order parameter derived from the Ginzburg–Landau theory is used as an input together with experimental values of critical transition temperature and the superconducting coherence length . Analytical expressions are obtained for information and complexity measures. Thus is directly related in a simple way with disorder and complexity. An analytical relation is found of the Fisher Information with the energy profile of superconductivity i.e. the ratio of surface free energy and the bulk free energy. We verify that a simple relation holds between Shannon and Fisher information i.e. a decomposition of a global information quantity (Shannon) in terms of two local ones (Fisher information), previously derived and verified for atoms and molecules by Liu et al. Finally, we find analytical expressions for generalized information measures like the Tsallis entropy and Fisher information. We conclude that the proper value of the non-extensivity parameter , in agreement with previous work using a different model, where . 相似文献
10.
Subhadip Biswas Rohitashwa Chattopadhyay Jayanta K Bhattacharjee 《Physics letters. A》2018,382(18):1202-1206
We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order . It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones. 相似文献
11.
We study the quantum Fisher information (QFI) of W states in the basic decoherence channels. We show that, as decoherence starts and increases, under i) depolarizing, QFI smoothly decays; ii) amplitude damping, QFI first exhibits a sudden drop to the shot noise level, then decreases to zero and finally increases back to the shot noise level; iii) phase damping, QFI is zero for all non-zero decoherence. We also find that on the contrary to GHZ states, QFI of W states in x and y directions are equal to each other and zero in z direction. 相似文献
12.
Considering a collection of two-level atoms in the presence of a saturating monochromatic, steady-state field, we investigate the geometric phase (GP) of an arbitrary medium’s atom. We find that it is possible to detect the saturation of the atomic response by the GP computation. This is an interesting result, because we can predict the collective behaviour of the atomic system—i.e., the saturation of the optical response of the medium- by investigating the GP of a single medium’s atom, described as a qubit. Moreover, we find that the plot of the atomic GP in terms of the detuning Δ is very similar to the absorption spectrum of the medium. In addition, it is shown that when the intensity of the driving laser field tends to saturation intensity, the qubit approaches maximum correlation with its environment described by the driving field and other qubits in the atomic system. Furthermore, we find that the behaviour of the entanglement is very analogous to that of the GP and the absorption coefficient. Besides, we adopt the atom to estimate the decoherence parameter by using the quantum Fisher information (QFI), an important measure of the information content of quantum states. Interestingly, we find that when the atomic system approaches its saturation point, the QFI decays with increasing the laser intensity, and therefore the parameter estimation becomes more inaccurate. 相似文献
13.
The dynamics of N-qubit GHZ state quantum Fisher information (QFI) under phase noise lasers (PNLs) driving is investigated in terms of non-Markovian master equation. We first investigate the non-Markovian dynamics of the QFI of N-qubit GHZ state and show that when the ratio of the PNL rate and the system–environment coupling strength is very small, the oscillations of the QFIs decay slower which corresponds to the non-Markovian region; yet when it becomes large, the QFIs monotonously decay which corresponds to the Markovian region. When the atom number N increases, QFIs in both regions decay faster. We further find that the QFI flow disappears suddenly followed by a sudden birth depending on the ratio of the PNL rate and the system–environment coupling strength and the atom number N, which unveil a fundamental connection between the non-Markovian behaviors and the parameters of system–environment couplings. We discuss two optimal positive operator-valued measures (POVMs) for two different strategies of our model and find the condition of the optimal measurement. At last, we consider the QFI of two atoms with qubit–qubit interaction under random telegraph noises (RTNs). 相似文献
14.
Two of the present authors have put forward a projective geometry based model of rational trading that implies a model for subjective demand/supply profiles if one considers closing of a position as a random process. We would like to present the analysis of a subjectivity in such trading models. In our model, the trader gets the maximal profit intensity when the probability of transaction is ∼0.5853. We also present a comparison with the model based on the Maximum of Entropy Principle. To the best of our knowledge, this is one of the first analyses that show a concrete situation in which trader profit optimal value is in the class of price-negotiating algorithms (strategies) resulting in non-monotonic demand (supply) curves of the Rest of the World (a collective opponent). Our model suggests that there might be a new class of rational trader strategies that (almost) neglects the supply-demand profile of the market. This class emerges when one tries to minimize the information that strategies reveal. 相似文献
15.
A.-S.F. Obada 《Physica A》2010,389(4):891-898
In this paper, the concept of atomic Fisher information (AFI) is introduced. The marginal distributions of the AFI are defined. This quantity is used as a parameter of entanglement and compared with linear and atomic Wehrl entropies of the two-level atom. The evolution of the atomic Fisher information and atomic Wehrl entropy for only the pure state (or dissipation-free) of the Jaynes-Cummings model is analyzed. We demonstrate the connections between these measures. 相似文献
16.
M. A. Guidry;Y. Song;C. Lafargue;R. Sobczyk;D. Decanini;S. Bittner;B. Dietz;L. Huang;J. Zyss;A. Grigis;M. Lebental 《Europhysics letters》2019,126(6)
Microlasers are of ample interest for advancing quantum chaos studies at the intersection of wave dynamics and geometric optics in resonators. However,the mode structures of three-dimensional microlasers without rotational symmetry remained largely unexplored due to fabrication limitations which have been overcome by now. Previous studies of such cavities revealed lasing modes localized on periodic orbits exclusively confined to a single plane. In this work,we report on the characterization of pyramidal,polymer-based microlasers and demonstrate that the lasing modes are localized on a genuine three-dimensional periodic orbit. The consequences on the laser features are further discussed,in particular stability and polarization issues.https://doi.org/10.1209/0295-5075/126/64004 相似文献
17.
We investigate the dependence of the average parameter estimation precision (APEP), which is defined by the quantum Fisher information, on the polar angle of the initial coherent spin state |θ0,φ0〉 in a one-axis twisting model. Jin et al. [New J. Phys. 11 (2009) 073049] found that the spin squeezing sensitively depends on the polar angle θ0 of the initial coherent spin state. We show explicitly that the APEP is robust to the initial polar angle θ0 in the vicinity of π/2 and a near- Heisenberg limit 2IN in quantum single-parameter estimation may still be achieved for states created with the nonlinear evolution of the nonideal coherent spin states θ0- π/2. Based on this model, we also consider the effects of the collective dephasing on spin squeezing and the APEE 相似文献
18.
Seeking the unknown dynamics obeyed by a particle gives rise to the de Broglie wave representation, without the need for physical assumptions specific to quantum mechanics. The only required physical assumption is conservation of momentum μ. The particle, of mass m, moves through free space from an unknown source-plane position a to an unknown coordinate x in an aperture plane of unknown probability density pX(x), and then to an output plane of observed position y=a+z. There is no prior knowledge of the probability laws or , with the particle momentum at the source. It is desired to (i) optimally estimate a, in the sense of a maximum likelihood (ML) estimate. The estimate is further optimized, by minimizing its error through (ii) maximizing the Fisher information about a that is received at y. Forming the ML estimate requires (iii) estimation of the likelihood law pZ(z), which (iv) must obey positivity. The relation pZ(z)≡|u(z)|2≥0 satisfies this. The same u(z) conveniently defines the Fisher channel capacity, a concept central to the principle of Extreme physical information (EPI). Its output u(z) achieves aims (i)-(iv). The output is parametrized by a free parameter K. For a choice K=0, the result is u(z)=δ(z), indicating classical motion. Or, for a finite, empirical choice K=? (Planck’s constant), u(z) obeys the familiar de Broglie representation as the Fourier transform of the particle’s probability amplitude function P(μ) on momentum μ. For a definite momentum μ,u(z) becomes a sinusoid of wavelength λ=h/μ, the de Broglie result. 相似文献
19.
We propose the binding information as an information theoretic measure of complexity between multiple random variables, such as those found in the Ising or Potts models of interacting spins, and compare it with several previously proposed measures of statistical complexity, including excess entropy, Bialek et al.?s predictive information, and the multi-information. We discuss and prove some of the properties of binding information, particularly in relation to multi-information and entropy, and show that, in the case of binary random variables, the processes which maximise binding information are the ‘parity’ processes. The computation of binding information is demonstrated on Ising models of finite spin systems, showing that various upper and lower bounds are respected and also that there is a strong relationship between the introduction of high-order interactions and an increase of binding-information. Finally we discuss some of the implications this has for the use of the binding information as a measure of complexity. 相似文献
20.
Luciano Telesca Rosa Caggiano Vincenzo Lapenna Michele Lovallo Serena Trippetta Maria Macchiato 《Physica A》2008,387(16-17):4387-4392
We investigated the dynamics of particulate matter data, recorded in Tito, a small industrial area of southern Italy. The analysis of these signals was performed using the Fisher information measure (FIM), which is a powerful tool for investigating complex and nonstationary signals, and the Shannon entropy, which is a well-known tool for investigating the degree of disorder in dynamical systems. Our results point to an increase of disorder and complexity from fine to coarse particulates. 相似文献