首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Helenkár 《Talanta》2010,82(2):600-6736
In this paper authors describe a GC-MS acquisition study, relating to the most common, non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen, naproxen, ketoprofen and diclofenac. As novelties to the field, for the trimethylsilyl (TMS) oxime ester derivatives of NSAIDs, at first, a tandem mass spectrometric (MS/MS) acquisition method has been developed, and, also for the first time, the three acquisition techniques, the full scan (FS), the selective ion monitoring (SIM) and the currently optimized MS/MS ones, have been compared: all three in parallel, under strictly the same derivatization/instrumental conditions, both from model solutions and from the Danube River samples. Critical evaluation of the three acquisition protocols was collated on their analytical performances and validated with the same characteristics like the six point calibration curve, the relative standard deviation percentages (RSD%) of parallel tests, the limit of quantitation (LOQ) and the instrumental limit of quantitation (ILQ) values. Data of six point calibration (r2 ≥ 0.997) and RSD% (average: 5.8 RSD%) values proved to be independent on the acquisition methods, while, LOQ and ILQ values furnished considerable differences. Decreasing LOQ data, (expressed in ng/L concentrations) were obtained in the FS, SIM, MS/MS line for ibuprofen (1.0, 0.43, 0.41), naproxen (1.1, 1.0, 0.42), ketoprofen (2.6, 1.0, 0.49) and diclofenac (1.4, 0.41, 0.21), respectively. The same trend was determined in terms of the ILQ values. The practical utility of the optimized MS/MS technique was confirmed by the quantitation of the NSAID contents of the Danube River samples, determined by all three acquisition techniques. Results obtained confirmed the primary importance of the MS/MS acquisition method, even in comparison to the SIM one: avoiding the extreme overestimation of the ibuprofen (≈100%) and ketoprofen (≈400%) concentrations in the Danube River samples.  相似文献   

2.
Animal biles and gallstones are popularly used in traditional Chinese medicines, and bile acids are their major bioactive constituents. Some of these medicines, like cow-bezoar, are very expensive, and may be adulterated or even replaced by less expensive but similar species. Due to poor ultraviolet absorbance and structural similarity of bile acids, effective technology for species differentiation and quality control of bile-based Chinese medicines is still lacking. In this study, a rapid and reliable method was established for the simultaneous qualitative and quantitative analysis of 18 bile acids, including 6 free steroids (cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, hyodeoxycholic acid, and ursodeoxycholic acid) and their corresponding glycine conjugates and taurine conjugates, by using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). This method was used to analyze six bile-based Chinese medicines: bear bile, cattle bile, pig bile, snake bile, cow-bezoar, and artificial cow-bezoar. Samples were separated on an Atlantis dC18 column and were eluted with methanol–acetonitrile–water containing ammonium acetate. The mass spectrometer was monitored in the negative electrospray ionization mode. Total ion currents of the samples were compared for species differentiation, and the contents of bile acids were determined by monitoring specific ion pairs in a selected reaction monitoring program. All 18 bile acids showed good linearity (r2 > 0.993) in a wide dynamic range of up to 2000-fold, using dehydrocholic acid as the internal standard. Different animal biles could be explicitly distinguished by their major characteristic bile acids: tauroursodeoxycholic acid and taurochenodeoxycholic acid for bear bile, glycocholic acid, cholic acid and taurocholic acid for cattle bile, glycohyodeoxycholic acid and glycochenodeoxycholic acid for pig bile, and taurocholic acid for snake bile. Furthermore, cattle bile, cow-bezoar, and artificial cow-bezoar could be differentiated by the existence of hyodeoxycholic acid and the ratio of cholic acid to deoxycholic acid. This study provided bile acid profiles of bile-based Chinese medicines for the first time, which could be used for their quality control.  相似文献   

3.
A specific and sensitive multi-method based on liquid chromatography–tandem mass spectrometry using atmospheric pressure chemical ionization (LC–APCI–MS/MS) has been developed for the determination of 20 anabolic steroids in muscle tissue (diethylstilbestrol, β-estradiol, ethynylestradiol, α/β-boldenone, α/β-nortestosterone, methyltestosterone, β-trenbolone, triamcinolone acetonide, dexamethasone, flumethasone, α/β-zearalenol, α/β-zearalanol, zearalenone, melengestrol acetate, megestrol acetate and medroxyprogesterone acetate). The procedure involved hydrolysis, extraction with tert-butyl methyl ether, defattening and final clean-up with solid phase extraction (SPE) on Oasis HLB and Amino cartridges. The analytes were analyzed by reversed-phase LC–MS/MS, in positive and negative multiple reaction monitoring (MRM) mode, acquiring two diagnostic product ions from each of the chosen precursor ions for the unambiguous confirmation of the hormones. The method was validated at the validation level of 0.5 ng/g. The accuracy and precision of the method were satisfactory. The decision limits CCα ranged from 0.03 to 0.14 ng/g while the detection capabilities CCβ ranged from 0.05 to 0.24 ng/g. The developed method is sensitive and useful for detection, quantification and confirmation of these anabolic steroids in muscle tissue and can be used for residue control programs.  相似文献   

4.
This work presents two liquid chromatography/tandem mass spectrometry (LC/MS/MS) acquisition modes: multiple reaction monitoring (MRM) and neutral loss scan (NL), for the analysis of 28 compounds in a mixture. This mixture includes 21 compounds related to the metabolism of three amino acids: tyrosine, tryptophan and glutamic acid, two pterins and five deuterated compounds used as internal standards. The identification of compounds is achieved using the retention times (RT) and the characteristic fragmentations of ionized compounds. The acquisition modes used for the detection of characteristic ions turned out to be complementary: the identification of expected compounds only is feasible by MRM while expected and unexpected compounds are detected by NL. In the first part of this work, the fragmentations characterizing each molecule of interest are described. These fragmentations are used in the second part for the detection by MRM and NL of selected compounds in mixture with and without biological fluids. Any preliminary extraction precedes the analysis of compounds in biological fluids.  相似文献   

5.
A high‐sensitivity ultra‐performance liquid‐chromatography (UPLC) coupled with tandem mass spectrometric method was developed for simultaneous quantification and confirmation of triptolide in both zebrafish embryos and the aqueous‐exposure solution on a tandem quadrupole mass spectrometer (TQ‐MS). This was achieved by performing quantification using the multiple reaction monitoring (MRM) acquisition with simultaneous characterization of the MRM peak using product ion confirmation (PIC) acquisition as it elutes from the chromatographic system. Separation was achieved on a 1.7 µm C18 UPLC column using 0.1% formic acid water–acetonitrile mobile phase with a cycle time of 6 min. The linear range of 0.115–360 ng/mL, and lower limits of detection of 0.02 ng/mL and quantification of 0.064 ng/mL were established. This method was successfully applied to determine the time course of triptolide absorption by zebrafish embryos and the amount of triptolide remaining in the culture medium after administration of two triptolide dosages at three time points. This coupled MRM with PIC approach could provide both qualitative and quantitative results without the need for repetitive analyses. This resulted in the reduction of further confirmative experiments and analytical time, and ultimately increased laboratory productivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A comprehensive analytical method based on liquid chromatography electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) with negative ionization mode has been developed for measuring of alkylphenols and bisphenol A in beverage samples. Concentration and clean up of samples were performed on 200 mg OASIS HLB solid extraction cartridges. The effects of mobile phases and additives on ionization were assessed. The recoveries for each compound ranged from 76.7 to 96.9% and reproducibilities were represented as having relative standard deviation (R.S.D.) below 10%. The limits of quantification (LOQ) of the method under multiple-reaction monitoring (MRM) acquisition mode were 0.04, 0.03 and 0.2 ng L−1 for 2 L of mineral drinking water and 2.0, 1.8 and 8.0 ng L−1 for 50 mL of soda beverages.  相似文献   

7.
建立了QuEChERS前处理-高效液相色谱-串联质谱法(HPLC-MS/MS)同时检测植物源性食品中噻氟隆和炔草隆残留的分析方法。样品以酸化乙腈提取,经石墨化碳黑(GCB)净化。采用C18色谱柱进行分离,以甲醇-0.1%甲酸溶液(含5mmol/mL乙酸铵)为流动相,梯度洗脱。质谱采用电喷雾正离子电离(ESI+),多重反应监测模式(MRM)检测。以保留时间和特征离子对进行定性,基质匹配外标法定量。结果表明:在葡萄、葡萄干、西红柿、大米、苹果、枸杞、黄瓜、小麦粉、白菜9种基质中,噻氟隆和炔草隆在各自线性范围内线性关系良好(相关系数r2均大于0.997);噻氟隆和炔草隆的定量限(S/N=10)分别为0.4、1.0μg/kg,在3个加标水平(1、2、10倍定量限)下,噻氟隆的回收率为84.7%~107.7%,相对标准偏差为4.2%~16.3%;炔草隆的回收率为74.7%~110.0%,相对标准偏差为4.3%~12.8%。该方法简单、快速、准确、灵敏、安全,适用于植物源性食品中噻氟隆和炔草隆残留的快速确证和定量分析。  相似文献   

8.
This paper reports the extension of our multiresidue analysis (MA) procedure with 18 natural and synthetic steroids; permitting the identification and quantification, in total of 81 pollutants from one solution, by a single injection, as their trimethylsilyl (TMS)-oxime ether/ester derivatives, by gas chromatography-mass spectrometry (GC-MS), within 31 min. As a novelty to the field, basic researches, such as fragmentation pattern analysis and derivatization optimization studies were performed for androsterone, transdehydroandrosterone, transandrosterone, mestranol, dihydrotestosterone, ethinylestradiol, testosterone, norethisterone, estriol, 4-androstene-3,17-dione, gestodene, levonorgestrel, etonogestrel, coprostanol, progesterone, cholesterol, medroxy-progesterone-acetate, stigmasterol and β-sitosterol. Results confirmed that (i) the TMS oxime-ether derivatives of the keto steroids provide from 1.40 times (gestodene) up to 4.25 times (norethisterone) higher responses compared to their TMS-ether ones, and (ii) the distribution of syn/anti oximes is characteristic to the ketosteroid species examined. Based on our optimized mass fragmentation, solid phase extraction (SPE) and derivatization studies separations have been performed in the total ion current (TIC) mode, identification and quantification of compounds have been carried out on the basis of their selective fragment ions. Responses, obtained with derivatized standards proved to be linear (hydroxysteroids), or have been calculated from calibration curves (ketosteroids) in the range of 1.88-750ng/L levels. Limit of quantitation (LOQ) values varied between 1.88ng/L and 37.5ng/L concentrations. The most important practical messages of this work are the high androsterone (0.744-4.28μg/L), transandrosterone (0.138-4.00μg/L), coprostanol (2.11-302μg/L), cholesterol (0.308-41μg/L), stigmasterol (1.21-8.40μg/L) and β-sitosterol (1.12-11.0μg/L) contents of influent wastewaters. β-Estradiol (100ng/L) and estriol (54ng/L) were found in one influent sample, only. Reproducibilities, characterized with the relative standard deviation percentages (RSD%) of measurements, varied between 1.73 RSD% (β-estradiol) and 5.4 RSD% (stigmasterol), with an average of 4.82 RSD%.  相似文献   

9.
粟有志  刘俊  李芳  雷红琴  李艳美  刘绪斌 《色谱》2015,33(4):363-370
建立了可食性包装材料中酸性黄23、酸性红18、酸性蓝7等22种酸性染料的高效液相色谱-串联质谱(HPLC-MS/MS)分析方法。样品以乙腈-甲醇(5:5, v/v)提取,采用Strata-X-AW固相萃取柱净化。待测物经Zorbax Eclipse Plus C18柱(100 mm×3.0 mm, 1.8 μm)分离,以乙腈-10 mmol/L乙酸铵为流动相梯度洗脱;采用电喷雾负离子源(ESI-)、多重反应监测(MRM)模式检测;以保留时间和特征离子对(母离子和两个碎片离子)信息比较进行定性,基质匹配外标法定量。22种酸性染料在各自的线性范围内相关系数(r2)均大于0.991;在3种基质(糯米纸、植物胶囊、明胶胶囊)中方法的定量限(以S/N≥10计)为0.1~2.0 mg/kg, 3个加标水平(1、2、10倍定量限)下,回收率为78.4%~109.5%,相对标准偏差(RSD)为4.6%~14.5%。本方法快速简便、准确可靠,适用于可食性包装材料中多种酸性染料的测定。  相似文献   

10.
An enzymatic fluorimetric method is described for the determination of chenodeoxycholic acid and its conjugates and of cholic acid and its conjugates in aqueous solutions and serum. The method is based on the oxidation of 7 α-hydroxy bile acids by β-NAD+ in the presence of 7 α-hydroxysteroid dehydrogenase; the NADH produced is monitored fluorimetrically. Chenodeoxycholic acid is determined in the presence of cholic acid by a differential kinetic procedure; the sum of the two acids (primary bile acids) is determined by an equilibrium procedure, and cholic acid is calculated by difference. The r.s.d. was ca. 3% and 10% for aqueous solutions and sera, respectively. Recoveries of chenodeoxycholic acid, cholic acid and primary bile acids added to serum samples averaged 100.5, 105.1, and 102.9%, respectively. Ten samples can be analyzed per working day.  相似文献   

11.
This paper presents a derivatization, mass fragmentation study relating to the most common six cholic acids, such as cholic, lithocholic, chenodeoxycholic, ursodeoxycholic, 3-hydroxy,7-ketocholanic and dehydrocholic acids, identified and quantified as pollutants in the aquatic environment at the first time. Derivatizations have been performed with the two-step process (1: oximation, 2: silylation) varying the time and temperature of both reactions. Optimum responses have been obtained after 30 min oximation with hydroxylamine.HCl and 90 min silylation with hexamethyldisilazane and trifluoroacetic acid at 70 degrees C. Fragmentation patterns of the trimethylsilyl (oxime) ether/ester derivatives of all six cholic acids provided the theoretically expected, fully derivatized compounds. Reproducibility/linearity of derivatives calculated on the basis of the corresponding selective fragment ions, characterized by the relative standard deviation percentages of measurements, proved to be < or =4.9 (RSD%). The practical utility of the method was shown by the identification and quantification of cholic acids as pollutants in the aquatic environment. Subsequently to a solid phase extraction study varying the pH of extractions (pH 2, pH 4 and pH 7), applying the OASIS cartridges, it has been confirmed that the recoveries for all six cholic acids are acceptable, varying between 77% and 104%, and are independent on the pH. The total cholic acid content of a Hungarian wastewater plants' influent wastewater varied between 184 microg/L and 356 microg/L, while the Danube rivers' cholic acid content was 4.1 microg/L, only.  相似文献   

12.
Multiple ion monitoring (MIM)‐dependent acquisition with a triple quadrupole‐linear ion trap mass spectrometer (Q‐trap) was previously developed for drug metabolite profiling. In the analysis, multiple predicted metabolite ions are monitored in both Q1 and Q3 regardless of their fragmentations. The collision energy in Q2 is set to a low value to minimize fragmentation. Once an expected metabolite is detected by MIM, enhanced product ion (EPI) spectral acquisition of the metabolite is triggered. To analyze in vitro metabolites, MIM‐EPI retains the sensitivity and selectivity similar to that of multiple reaction monitoring (MRM)‐EPI in the analysis of in vitro metabolites. Here we present an improved approach utilizing MIM‐EPI for data acquisition and multiple data mining techniques for detection of metabolite ions and recovery of their MS/MS spectra. The postacquisition data processing tools included extracted ion chromatographic analysis, product ion filtering and neutral loss filtering. The effectiveness of this approach was evaluated by analyzing oxidative metabolites of indinavir and glutathione (GSH) conjugates of clozapine and 4‐ethylphenol in liver microsome incubations. Results showed that the MIM‐EPI‐based data mining approach allowed for comprehensive detection of metabolites based on predicted protonated molecules, product ions or neutral losses without predetermination of the parent drug MS/MS spectra. Additionally, it enabled metabolite detection and MS/MS acquisition in a single injection. This approach is potentially useful in high‐throughout screening of metabolic soft spots and reactive metabolites at the drug discovery stage. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A novel LC/MS/MS method that uses multiple ion monitoring (MIM) as a survey scan to trigger the acquisition of enhanced product ions (EPI) on a hybrid quadrupole-linear ion trap mass spectrometer (Q TRAP) was developed for drug metabolite identification. In the MIM experiment, multiple predicted metabolite ions were monitored in both Q1 and Q3. The collision energy in Q2 was set to a low value to minimize fragmentation. Results from analyzing ritonavir metabolites in rat hepatocytes demonstrate that MIM-EPI was capable of targeting a larger number of metabolites regardless of their fragmentation and retained sensitivity and duty cycle similar to multiple reaction monitoring (MRM)-EPI. MIM-based scanning methods were shown to be particularly useful in several applications. First, MIM-EPI enabled the sensitive detection and MS/MS acquisition of up to 100 predicted metabolites. Second, MIM-MRM-EPI was better than MRM-EPI in the analysis of metabolites that undergo either predictable or unpredictable fragmentation pathways. Finally, a combination of MIM-EPI and full-scan MS (EMS), as an alternative to EMS-EPI, was well suited for routine in vitro metabolite profiling. Overall, MIM-EPI significantly enhanced the metabolite identification capability of the hybrid triple quadrupole-linear ion trap LC/MS.  相似文献   

14.
This paper presents a general screening method, based on liquid chromatography/mass spectrometry (LC/MS), for the simultaneous detection in human urine of 72 xenobiotics (21 diuretics, 16 synthetic glucocorticoids, 17 beta-adrenergic drugs, 10 stimulants, 5 anti-oestrogens and 3 anabolic steroids), excreted free or as glucuro-conjugates in urine. Although the method has been specifically designed and evaluated in view of its potential application to anti-doping analyses, it can also be effective in other areas of analytical toxicology. Sample preparation was based on two liquid/liquid separation steps (performed at alkaline and at acid pH, respectively) of hydrolyzed human urine, and then an assay by LC/MS-MS in positive and negative ionization mode using an electrospray ionization source (ESI) and multiple reaction monitoring (MRM) as the acquisition mode. The overall time needed for an LC run was less than 15 minutes. All compounds showed good reproducibility in terms of both the retention times (CV%<1) and the relative abundances of the diagnostic transitions (CV%<10). The limits of detection (LOD) were in the range of 1–50 ng/mL for glucocorticoids, anti-oestrogens and steroids, and 50–500 ng/mL for diuretics, beta-adrenergic drugs and stimulants, thus satisfying the minimum required performance limits (MRPL) set by the World Anti-Doping Agency (WADA) for the accredited anti-doping laboratories.  相似文献   

15.
应用固相萃取及高效液相色谱-串联质谱技术,建立了医院废水中12种磺胺、4种喹诺酮、3种四环素以及罗红霉素和甲氧苄氨嘧啶等21种抗生素的定性定量方法。水样经HLB小柱萃取富集,使用10%甲醇溶液净化,经甲醇洗脱定容后,以高效液相色谱-串联质谱多反应监测离子模式(MRM)对目标物进行分析。在优化实验条件下,21种抗生素的线性范围为1.0~500μg/L,相关系数r2>0.99,方法检出限为0.005~0.022μg/L。在加标量为0.05μg/L和1.0μg/L时,空白加标回收率分别为71%~105%和76%~111%,RSD均小于15%。以医院废水为基质,21种抗生素的加标回收率为71%~135%,RSD小于25%。该方法简捷、快速、准确,能够实现医院废水中多种抗生素药物残留的同时分析。  相似文献   

16.
粟有志  李芳  于晶晶  李艳美  雷红琴  罗琼 《色谱》2016,34(6):577-582
建立了QuEChERS前处理-高效液相色谱-串联质谱(HPLC-MS/MS)同时检测植物源食品中氯啶菌酯和丙炔恶草酮残留量的分析方法。样品经酸化乙腈提取,采用乙二胺-N-丙基硅烷(PSA)和氨基(NH2)吸附剂净化。以0.1%(v/v)甲酸水(含2 mmol/L乙酸铵)-甲醇(2:8, v/v)为流动相,在0.25 mL/min流速下等度洗脱,采用C18色谱柱分离,电喷雾正离子电离(ESI+)、多重反应监测(MRM)模式质谱检测。以保留时间和特征离子对(母离子和两个碎片离子)信息比较进行定性,基质匹配外标法定量。结果表明:在葡萄、葡萄干、马铃薯、大米、番茄、油菜籽6种基质中,氯啶菌酯和丙炔恶草酮在各自线性范围内线性关系良好(相关系数r2均大于0.996)。氯啶菌酯的定量限(LOQ)(以S/N≥10计)为0.5 μg/kg,丙炔恶草酮的定量限为1.0 μg/kg。在1、2、10倍LOQ 3个添加水平下,氯啶菌酯的平均回收率为71.6%~112.1%,相对标准偏差为2.6%~12.1%;丙炔恶草酮的平均回收率为77.6%~118.8%,相对标准偏差(RSD)为3.6%~14.3%。该方法高效快捷、灵敏、准确,适用于植物源性食品中氯啶菌酯和丙炔恶草酮的快速检测。  相似文献   

17.
建立了液相色谱-串联质谱法同时测定动物脂肪中111种农药残留的分析方法.样品经乙腈均质提取2次,旋转蒸发浓缩后经过凝胶渗透色谱净化.111种农药在Atlantis T3柱上以乙腈和0.1%甲酸溶液为流动相,梯度洗脱条件下完成分离,采用电喷雾电离串联质谱在正离子多反应监测模式下进行测定.目标化合物的保留时间为2.4 ~33.8 min,线性相关系数为0.984 5 ~0.999 9;在4种动物脂肪中分别添加1倍、2倍、4倍定量下限3个水平的平均回收率为60% ~120%,相对标准偏差为0.6% ~19.8%;111种农药在动物脂肪中的检出限为0.20 ~960 μg/kg,定量下限为0.40 ~2 400 μg/kg.该方法操作简单、灵敏度高、选择性好,符合农药多残留分析的要求.  相似文献   

18.
建立超高效液相色谱–串联质谱法检测动物源食品中克伦特罗、莱克多巴胺、沙丁胺醇、特布他林、氯丙那林、西马特罗、菲诺特罗、妥布特罗、喷布特罗等9种β-受体激动剂的方法。样品经β-葡萄糖醛苷酶酶解,用0.2mol/L乙酸铵溶液(pH 5.2)提取,阳离子固相萃取柱净化,以乙腈–0.2%甲酸水溶液作为流动相进行洗脱,用Eclipse Plus C_(18)(50 mm×2.1 mm,1.8μm)色谱柱分离,采用多反应监测(MRM)模式进行定性和定量分析。9种β-受体激动剂的质量浓度在0.1~10.0 ng/mL范围内与定量离子丰度呈良好的线性关系,线性相关系数均大于0.999,检出限为0.1μg/kg。平均回收率为85.0%~101.2%,测定结果的相对标准偏差为2.8%~9.5%(n=6)。该方法精密度好,灵敏度高,能简便、快速、准确地测定动物源食品中的9种β-受体激动剂。  相似文献   

19.
An analytical method for the determination of bisoprolol in human plasma has been developed based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analyte and internal standard (IS) diphenhydramine were cleaned up by protein precipitation with acetonitrile, reconstituted in mobile phase and separated by reversed-phase high-performance liquid chromatography (HPLC) using methanol:10 mm ammonium acetate:formic acid (70:30:0.1 v/v/v) as mobile phase. Detection was carried out by multiple reaction monitoring (MRM) on an LC-MS/MS system and was completed within 2.5 min. The assay was linear over the range 0.5-100 ng/mL with a limit of quantitation (LOQ) of 0.5 ng/mL. The intra- and inter-day precision levels were within 5.54 and 9.95%, respectively, while the accuracy was in the range 89.4-113%. This method has been utilized in a pharmacokinetic study, where healthy volunteers were treated with an oral dose of 5 mg bisoprolol.  相似文献   

20.
Yang R  Wei B  Gao H  Yu W 《色谱》2012,30(2):160-164
建立了一种简单、快速、准确测定玩具中香豆素、7-甲氧基香豆素、二氢香豆素、7-甲基香豆素、7-乙氧基-4-甲基香豆素5种香豆素类致敏性香味剂的检测方法。样品经四氢呋喃超声提取,提取液浓缩至近干,以25 mL甲醇 溶解残渣定容后进行高效液相色谱-串联质谱分析。色谱流动相为乙腈和0.1%乙酸水溶液,梯度洗脱,多反应监 测(MRM)模式进行定性和定量分析。5种目标物的工作曲线线性范围均为10~1 000 μg/L;除了二氢香豆素的定 量限(信噪比(S/N)>10)为5.0 μg/L外,其他化合物均为2.0 μg/L;在3种不同类型的样品中添加高、中、低水平的5种目标物标准品,其加标回收率为93.2%~105.8%,相对标准偏差为3.65%~8.27%。应用本方法对12种玩具和儿童用品样品进行了测试,其中9个样品中检出了香豆素类致敏性香味剂,有两个样品中香豆素和7-甲氧基香豆素的含量超过了欧盟玩具新指令的限量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号