首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keggin和Dawson结构多金属氧酸盐光催化脱色偶氮染料   总被引:1,自引:0,他引:1  
The investigation photocatalytic degradation of three azo dyes solution(Acid Mordant Navy Blue RRN,Acid Mordant Black PV,Acid Mordant Brown RH) under UV light irradiation using the polyoxometalates as catalyst was reported in this article.The research results showed that the photocatalytic activity of Keggin catalyst is higher than that of Dawson,and the catalyst α-H4SiW12O40 had the best efficiency to the photocatalytic decoloration of RRN.In 350 mg·L-1(30 mL) RRN solution,the optimum reaction condition wa...  相似文献   

2.
The photocatalytic activity of TiO2 nanoparticles (nano‐TiO2) and its hybrid with SiO2 (nano‐TiO2–SiO2) for degradation of some organic dyes on cementitious materials was studied in this work. Nanohybrid photocatalysts were prepared using an inorganic sol–gel precursor and then characterized using XRD, SEM and UV–Vis. The grain sizes were estimated by Scherrer's equation to be around 10 nm. Then, a thin layer was applied to Portland cement concrete (PCC) blocks by dipping them into nano‐TiO2 and nano‐TiO2–SiO2 solution. The efficiency of coated PCC blocks for the photocatalytic decomposition of two dyes, Malachite Green oxalate (MG) and Methylene Blue (MB), was examined under UV and visible irradiation and then monitored by the chemical oxygen demand tests. The results showed that more than 80% and 92% of MG and MB were decomposed under UV–Vis irradiation using blocks coated with nano‐TiO2–SiO2. TiO2/PCC and TiO2–SiO2/PCC blocks showed a significant ability to oxidize dyes under visible and UV lights and TiO2–SiO2/PCC blocks require less time for dye degradation. Based on these results, coated blocks have increased photocatalytic activity which can make them commercially accessible photocatalysts.  相似文献   

3.
In this paper, ceramic plates were used as a support of TiO2 nanoparticles for photocatalytic decolorization of a mixture of three dyes. The three textile dyes (C.I. Basic Red 46, C.I. Basic Blue 3 and Malachite Green) were quantified simultaneously during the photocatalytic degradation process. The partial least squares modeling was successfully applied for the multivariate calibration of the spectrophotometric data. Also, the central composite design has been applied to the optimization of photocatalytic decolorization of the dye solution containing three dyes using an immobilized UV/TiO2 process. The optimum initial concentration of three dyes, reaction time, and UV light intensity were found to be 5 mg/L, 240 min, and 47.2 W/m2, respectively. The chronic phytotoxicity of mixture of dyes was evaluated using aquatic species Spirodela polyrhiza (S. polyrhiza) prior to and after photocatalysis. The phytotoxicity results revealed that the photocatalysis process could effectively reduce the phytotoxicity of the dyes from their aqueous solutions.  相似文献   

4.
A Bi-based oxychloride Bi(3)O(4)Cl with a layered structure as a novel efficient photocatalyst was studied in the present paper. The compound synthesized by a solid-state reaction method has a band gap of 2.79 eV. The material possesses a fair visible-light-induced photocatalytic activity. Generally, the photocatalytic efficiency of Bi(3)O(4)Cl for degrading methyl orange (MO) is higher than that of anatase TiO(2) under UV light illumination. The dispersion of Ag over Bi(3)O(4)Cl leads to an obvious increase in the photocatalytic performance. The MO decolorization over Bi(3)O(4)Cl is mainly initiated by a photocatalytic process. The photocatalytic activity is discussed in close connection with the crystal structure and the electronic structure in details.  相似文献   

5.
The photocatalytic degradation of two reactive dyes has been investigated by UV/TiO2/H2O2 using an immobilized TiO2 photocatalytic reactor. Reactive Blue 8 (RB 8) and Reactive Blue 220 (RB 220) textile dyes were used as model compounds. Photocatalytic degradation processes were performed using a 5-L solution containing dyes. The initial concentrations of dyes were 50 mg/L. The radiation source was two 15 W UV-C lamps. A batch mode immersion photocatalytic reactor was utilized. UV-vis and ion chromatography (IC) analyses were employed to obtain the details of the photodegradation of the selected dyes. Colored synthetic waters were completely decolorized in relatively short time after UV irradiation in the presence of various concentrations of hydrogen peroxide. Formate, acetate, oxalate, and glyoxylate anions were detected as dominant aliphatic intermediates where they were further oxidized slowly to CO2. The UV/TiO2/H2O2 process was able to oxidize the dyes with partial mineralization of carbon, nitrogen, and sulfur heteroatoms into CO2, NO3-, and SO4(2-), respectively. Kinetics analysis indicates that the photocatalytic decolorization rates of the dye can be approximated by a pseudo-first-order model. The UV/TiO2/H2O2 process proved to be capable of decolorization and mineralization of the reactive dyes (RB 8 and RB 220).  相似文献   

6.
The objective of this research was to use combustion synthesis to create a nano‐sized ZnO photocatalyst using citric acid as the fuel and zinc nitrate as the oxidant. The starting materials were mixed in a stoichiometric ratio, and a slurry precursor with high homogeneity was formed. The precursor was ignited at room temperature, resulting in dry, loose, and voluminous ZnO powders. The powders, characterized by SEM, TEM and XRD, showed a particle size range of 40 to 80 nm with a wurtzite structure. The ZnO powders were introduced as a photocatalyst for the degradation of methyl orange, which was adopted as a model compound. UV light (6W) was used as the irradiation source to induce synthesized ZnO powders to perform catalytic activity. The photocatalytic reaction was executed in 40 mL of a 10 ppm methyl orange aqueous solution under 254 nm UV illumination. In this work, it was observed that both UV light and ZnO powders are needed for the photocatalytic reaction. In addition, it was found that increasing the amount of ZnO powder present in the MO (methyl orange‐C14H14N3NaO3S) solution did not correlate directly with an increase in photocatalytic ability. It was found that the scattering problem of UV light also needs to be considered. The optimized photocatalytic degradation ratio in this work reached 92.7%.  相似文献   

7.
The photocatalytic degradation of azo dyes with different structures (amaranth, sunset yellow and tartrazine) using TiO2-Pt nanoparticles (TPt), TiO2-Pt/graphene oxide (TPt-GO) and TiO2-Pt/reduced graphene oxide (TPt-rGO) composites were investigated in the presence of UV and natural sunlight irradiation. The composites were prepared by a combined chemical-thermal method and characterized by Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Infrared (FTIR) and UV–Vis spectroscopy. The modification of TiO2-Pt with graphene oxide shifted its optical absorption edge towards the visible region and increased its photocatalytic activity under UV and natural sunlight irradiation. The efficiency of catalysts on azo dyes degradation (in similar conditions) reached high values (above 99%) under sunlight conditions, proving the remarkable photocatalytic activities of obtained composites. TPt-GO nanocomposite exhibited higher photoactivity than TPt or TPt-rGO, demonstrating degradation efficiencies of 99.56% for amaranth, 99.15% for sunset yellow and 96.23% for tartrazine. The dye photodegradation process follows a pseudo-first-order kinetic with respect to the Langmuir-Hinshelwood reaction mechanism. A direct dependence between azo dyes degradation rate and chemical structure of dyes has been observed.  相似文献   

8.
A magnetized nano‐photocatalyst based on TiO2/magnetic graphene was developed for efficient photodegradation of crystal violet (CV). Scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy and elemental mapping were used to characterize the prepared magnetic nano‐photocatalyst. The photocatalytic activity of the synthesized magnetic nano‐photocatalyst was evaluated using the decomposition of CV as a model organic pollutant under UV light irradiation. The obtained results showed that TiO2/magnetic graphene exhibited much higher photocatalytic performance than bare TiO2. Incorporation of graphene enhanced the activity of the prepared magnetic nano‐photocatalyst. TiO2/magnetic graphene can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, magnetized nano‐photocatalyst dosage, UV light irradiation time, H2O2 amount and initial concentration of dye on the photodegradation efficiency were evaluated and optimized. Efficient photodegradation (>98%) of the selected dye under optimized conditions using the synthesized nano‐photocatalyst under UV light irradiation was achieved in 25 min. The prepared magnetic nano‐photocatalyst can be used in a wide pH range (4–10) for degradation of CV. The effects of scavengers, namely methanol (OH? scavenger), p‐benzoquinone (O2?? scavenger) and disodium ethylenediaminetetraacetate (hole scavenger), on CV photodegradation were investigated.  相似文献   

9.
以PbTiO3为光催化剂,对多种水溶性染料的光催化降解反应进行了研究,结果表明:光降解脱色效率与染料溶液的pH值、光照时间、光源种类及催化剂用量等因素有关.染料溶液浓度为10mg/L,pH=6,催化剂用量为100mg/50mL,直接以太阳光作光源,光照1h以后,脱色率达90%以上,有机染料中硫和氮元素转化为SO42-和NO3-的生成率分别为85%和65%.  相似文献   

10.
Novel magnetic hybrid nanomaterials 1 (LaFeO3.Fe3O4@SiO2-NH2/PW12) were synthesized by supporting phosphotungstic acid (H3PW12O40; PW12) on LaFeO3.Fe3O4 nanomaterials through sono-assisted method. The synthesized nanomaterials were fully characterized by using FT-IR, XRD, UV–vis, BET-BJH, VSM, SEM, and TEM analyses. FT-IR, XRD, and UV–vis confirmed successful synthesis of nanomaterials. The SEM and TEM images revealed spherical morphology with core-shell structure for hybrid nanomaterials 1 . VSM results confirmed the magnetic property of hybrid nanomaterials 1 and suggested it as easily recyclable photocatalyst for removal of organic dyes from aqueous solution. The photocatalytic activity of hybrid nanomaterials 1 has been studied over the degradation of methylene blue (MB) and methyl orange (MO) solution under UV–vis light irradiation. Importantly the hybrid nanomaterials 1 showed outstanding degradation efficiency for MB solution in comparison with bare LaFeO3.Fe3O4 and PW12. The photocatalytic activity was enhanced mainly due to the high efficiency in separation of electron–hole pairs induced by the remarkable synergistic effects of LaFeO3.Fe3O4 and PW12 semiconductors. After the photocatalytic reaction, the nanocomposite can be easily separated from the reaction solution and reused several times without loss of its photocatalytic activity. Trapping experiments indicated that hole (hVB+) and OH radicals were the main reactive species for dye degradation in the present photocatalytic system. On the basis of the experimental results and estimated band gaps, the mechanism for the enhanced photocatalytic activity was proposed.  相似文献   

11.
纳米TiO2光催化氧化-免疫-电生孔复合技术能够在低的纳米TiO2浓度条件下(3.12 μg·mL-1)高效选择性地杀伤LoVo肠癌细胞. 在光强为4 mW·cm-2的紫外光(波长253.7 nm)照射下, 30 min内可全部杀死癌细胞. 利用共聚焦荧光显微镜、透射电镜(TEM)和单细胞凝胶电泳的方法研究了其作用过程. 结果表明, 经抗体修饰的纳米TiO2微粒能自动吸附在癌细胞的细胞膜上, 在电脉冲作用下纳米TiO2可进入细胞内部, 并主要集中在细胞核区域. 在紫外光的照射下, 基于纳米TiO2的光催化氧化作用, 造成细胞内一些细胞器、核膜和核中DNA的损伤, 使细胞坏死. 由于是在细胞内部产生光催化氧化作用, 显著提高了杀伤LoVo肠癌细胞的能力.  相似文献   

12.
Nano- and submicrometer zinc(II) oxide particles were synthesized by the polyol method and were used for the preparation of ZnO/poly(methyl methacrylate) (ZnO/PMMA) composite materials by the chain polymerization of methyl methacrylate (MMA) in bulk. ZnO particles with an organophilic surface layer were homogeneously dispersed in the PMMA matrix. Very low concentrations (0.1 wt.%) of nano zinc oxide absorbed over 98% of UV light as determined by UV-vis spectroscopy. Nano zinc oxide (75 nm) increased the initial decomposition temperature of the PMMA matrix by 30-40 °C at concentrations of 0.1% and above. This was explained by the changes in the termination mechanism of MMA polymerization resulting in a reduced concentration of vinylidene chain ends. Nano ZnO also increased the MMA polymerization reaction rate and reduced the activation energy. Submicrometer ZnO showed lower UV absorption, thermal stabilization and no influence on the reaction kinetics indicating that average particle size is of vital importance for the properties of PMMA nanocomposites and for MMA polymerization.  相似文献   

13.
To enhance the degradation of colour and chemical oxygen demand using photocatalytic activity, Graphene–CuO–Co3O4 hybrid nanocomposites were synthesized using an in situ surfactant free facile hydrothermal method. The photocatalytic degradation of synthetic anionic dyes, methyl orange (MO) and Congo red (CR), and industrial textile wastewater dyes under visible light irradiation was evaluated. The synthesized nanocomposite was characterized structurally and morphologically using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscope, and Fourier transform infrared spectroscopy. Evaluation of the colour indicated complete removal at 15 min of irradiation for the MO and CR dyes, with 99% degradation efficiency. The reaction time for the primary effluent wastewater dye was 60 min for 81% dye removal. In contrast, a longer reaction time was required to meet the national discharge regulation for the raw wastewater dye, 300 min for 60% dye removal. The mechanism for dye degradation using the Graphene–CuO–Co3O4 hybrid nanocomposite was elucidated using the Langmuir–Hinshelwood model, and the rate constant and half-life of the degradation process were calculated. The results demonstrate that photocatalytic degradation using a hybrid nanocomposite and visible light irradiation is a sustainable alternative technology for removing colour from wastewater dye.  相似文献   

14.
In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (UV–vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).  相似文献   

15.
Optimization of curing cotton textiles through self-cleaning property constructs the main goal of the present study. Cotton fabrics with 0.1, 0.3, 0.5, 1 and 1.5 on weight of bath percent were cured by nano titanium dioxide (P25 Degussa) with cross-link and non cross-link methods. In this study, succinic acid was used as a cross-link agent to attach TiO2 to the cotton. The amount of loaded titania particles to cotton fabrics and the thermal behavior of cured samples were studied by the burning method and thermogravimetric analysis, respectively. Self-cleaning degree of cured samples, stained with natural and synthesized dyes under irradiation of 20 and 400 W UV lamps was investigated by a reflectance spectrophotometer. The structure and morphology of treated cotton fabrics were investigated using scanning electron microscopy and crystallinity of titania coatings by X-ray diffraction spectroscopy. The tearing strengths of titania-coated cotton fabrics before and after light irradiation were measured. Results showed that the stability of nano TiO2 coating and self-cleaning degree of treated samples with cross-link method were much higher than those of non cross-link method, and cotton cellulosic chains were not decomposed by the photocatalytic activity of titania.  相似文献   

16.
SnO nanoparticles have been successfully synthesized in the presence of Triton-X 100 (TX-100) surfactant via hydrothermal method for the first time, and the photocatalytic activity under UV and visible light irradiation for the degradation of Methylene Blue (MB) and Rhodamine B (RdB) organic textile dyes was investigated. The structural, morphological and chemical characterizations were investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), UV–vis. diffuse reflectance spectroscopy (UV–vis DRS) and photoluminescence (PL) analysis. The results reveal that the addition of surfactant, TX-100, in the precursor solutions leads to reduction in crystallite size with significant changes in morphological structure of SnO nanoparticles. The synthesized SnO nanoparticles show excellent photocatalytic activity under UV or visible light irradiation. MB and RdB dyes degraded completely under UV irradiation after 90 and 150 min, respectively. Also, MB and RdB dyes degraded only 150 min later under visible light illumination with a little amount of photocatalyst (0.8 g/L). Hence, this work explores the facile route to synthesizing efficient SnO nanoparticles for degrading organic compound under both UV and visible light irradiations.  相似文献   

17.
《Arabian Journal of Chemistry》2020,13(11):8248-8261
Recently, the discharge of effluent containing dyes and other chemicals into river, lakes, and land has become a serious problem which increases the pollution level drastically. The dyes in the effluent are very difficult to be removed by conventional water treatment methods. Thus, there is a great need for more advanced methods that are cost-effective and more efficient. In this study, silver nano particles (AgNps) were synthesized by green method using extracts of onion (O), tomato (T), acacia catechu (C) alone, and mixed COT extracts. The reduction and formation of AgNps and its ions have been characterized by using several techniques, Ultra visible spectroscopy (UV–vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM)-energy dispersive X-ray spectrometer (EDX), Fourier transmission infrared spectroscopy (FTIR), and dynamic light scattering (DLS). These techniques revealed that the particle sizes of synthesized AgNps in all the extracts were ranged in between 5 and 100 nm with a crystalline nature. The synthesized AgNps were used as catalysts for the degradation of three different types of dyes, methyl orange (MO), methyl red (MR), and congo red (CR) in the liquid state. The excellent catalytic application of all the synthesized AgNps on the degradation of the studied dyes was confirmed via UV–visible results by studying the reduction in the absorbance maxima value within a very short interval of time. COT synthesized products were found to achieve the best performance for all dyes degradation among all products.  相似文献   

18.
Sulfur doped anatase TiO2 nanoparticles (3 nm−12 nm) were synthesized by the reaction of titanium tetrachloride, water and sulfuric acid with addition of 3M NaOH at room temperature. The electro-optical and photocatalytic properties of the synthesized sulfur doped TiO2 nanoparticles were studied along with Degussa commercial TiO2 particles (24 nm). The results show that band gap of TiO2 particles decreases from 3.31 to 3.25 eV and for that of commercial TiO2 to 3.2 eV when the particle sizes increased from 3 nm to 12 nm with increase in sulfur doping. The results of the photocatalytic activity under UV and sun radiation show maximum phenol conversion at the particle size of 4 nm at 4.80% S-doping. Similar results are obtained using UV energy for both phenol conversion and conversion of CO2+H2O in which formation of methanol, ethanol and proponal is observed. Production of methanol is also achieved on samples with a particle size of 8 and 12 nm and sulfur doping of 4.80% and 5.26%. For TiO2 particle of 4 nm without S doping, the production of methanol, ethanol and proponal was lower as compared to the S-doped particles. This is attributed to the combined electronic effect and band gap change, S dopant, specific surface area and the light source used.  相似文献   

19.
In this study, highly photoactive BiOI nanoparticles (NPs) under sunlight irradiation were synthesized by a facile precipitation method using polyvinylpyrrolidone (PVP) at room temperature. The as‐prepared catalysts were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) and UV–vis diffuse reflectance spectra (UV–vis DRS). The results of XRD showed that PVP did not have any significant effect on tetragonal crystalline structure of BiOI. Also, using different amounts of PVP in the synthesis led to different morphologies and sizes of BiOI particles. It was found that using 0.2 g of PVP in the synthesis method changed morphology from 1‐μm platelets to NPs with size under 10 nm. In addition, the photocatalytic performance of prepared photocatalysts was evaluated in the photodegradation of reactive blue 19 (RB19) dye under sunlight irradiation. The BiOI synthesized using 0.2 g PVP (BiOI0.2) showed higher degradation efficiency compared to BiOI prepared without any additive. Excellent visible light photocatalytic properties of nano‐scaled BiOI0.2 samples compared to BiOI platelets could be attributed to higher surface‐to‐volume ratio and narrow band‐gap energy of as‐prepared BiOI0.2 NPs.  相似文献   

20.
ESIPT-inspired benzimidazolyl substituted fluorescein dyes were synthesized. PH-sensitivity was determined by the photophysical property measured at a physiological possible pH range. Fluorescence quantum efficiency values were calculated independently at two different emissions. A rational relationship is defined between fluorescence quantum efficiency and calculated HOMO energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号