首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The creation of multifunctional nanomaterials by combining organic and inorganic components is a growing trend in nanoscience. The unique size-dependent properties of magnetic nanoparticles (MNPs) make them amenable to numerous applications such as carriers of expensive biological catalysts, in magnetically assisted chemical separation of heavy metals and radionuclides from contaminated water sources. The separation of minor actinides from high-level radionuclide waste requires a sorbent stable in acidic pH, with ease of surface functionalization, and a high capacity for binding the molecules of interest. For the described experiments, the MNPs with 50 nm average size were used (size distribution from 20 to 100 nm and an iron content of 80–90 w/w%). The MNPs that have been double coated with an initial silica coating for protection against iron solubilization and oxidation in nitric acid solution (pH 1) and a second silica/polymer composite coating incorporating partially imbedded poly(allylamine) (PA). The final product is magnetic, highly swelling, containing >95% water, with >0.5 mmol amines g?1 available for functionalization. The amine groups of the magnetic resin were functionalized with the chelating molecules diethylenetriaminepentaacetic acid (DTPA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) for separation of minor actinides from used nuclear fuel.  相似文献   

2.
This paper reports on the results of investigations into the dislocation mobility in n-Si single crystals (N d =5×1024 m?3) upon simultaneous exposure to electric (j=3×105 A/m2) and magnetic (B≤1 T) fields. It is found that the introduction of dislocations (≈109 m?2) into dislocation-free silicon doped with phosphorus leads to the appearance of the paramagnetic component of the magnetic susceptibility. The paramagnetic component increases with an increase in the dopant concentration. Similar transformations in silicon account for the formation of magnetically sensitive impurity stoppers that respond to external magnetic perturbations. An analysis of the behavior of dislocations in electric and magnetic fields has revealed a parabolic dependence of the dislocation path length on the magnetic induction B. The effective charges and mobilities of dislocations are numerically calculated from the results obtained. A model is proposed according to which the observed increase in the dislocation mobility is associated with the decrease in the retarding power of magnetically sensitive stoppers due to a local change in the magnetic characteristics of the material and the spin-dependent reactions stimulated by a magnetic field.  相似文献   

3.
Based on the Heisenberg model including single-site uniaxial anisotropy and using aGreen’s function technique we studied the influence of size and composition effects on theCurie temperature T C , saturationmagnetization M S and coercivityH C of spherical nanoparticles with astructural formulaM e 1?x Zn x Fe2O4,Me = Ni, Cu, Co, Mn. It is shown that for x = 0.4–0.5and d = 10–20 nm these nanoparticles have aT C  = 315 K and are suitable for aself-controlled magnetic hyperthermia.  相似文献   

4.
Experimental studies of the structural, magnetic and magnetocaloric properties of the three compounds Pr0.5X0.1Sr0.4MnO3 (X = Ce, Eu and Y) are reported. Our samples were synthesized using the Pechini sol–gel method. X-ray powder diffraction at room temperature indicates that our materials crystallize in the orthorhombic structure with Pbnm space group. The compounds undergo a second-order magnetic transition from paramagnetic to ferromagnetic state around their own Curie temperatures T C ~ 310, 270 and 230 K for X = Ce, Eu and Y, respectively. A considerable magnetocaloric effect (MCE) is observed around room temperature. The maximum values of magnetic entropy change ?S max are 3.54, 3.81 and 2.99 J/kgK for the samples with X = Ce, Eu and Y, respectively, when a magnetic field of 5 T was applied. The relative cooling power (RCP) values for the corresponding materials are 246.60, 261.66 and 298 J/kg. It is shown that for Pr0.5X0.1Sr0.4MnO3 the exponent n and the magnetic entropy change follow a master curve behavior. With the universal scaling curve, the experimental ?S at several temperatures and fields can be extrapolated.  相似文献   

5.
Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s?1 mM?1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s?1 mM?1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.  相似文献   

6.
We consider the Ising systems in d dimensions with nearest-neighbor ferromagnetic interactions and long-range repulsive (antiferromagnetic) interactions that decay with power s of the distance. The physical context of such models is discussed; primarily this is d = 2 and s = 3 where, at long distances, genuine magnetic interactions between genuine magnetic dipoles are of this form. We prove that when the power of decay lies above d and does not exceed d + 1, then for all temperatures the spontaneous magnetization is zero. In contrast, we also show that for powers exceeding d + 1 (with d ≥ 2) magnetic order can occur.  相似文献   

7.
The hexagonal pyrrhotite Fe1?x S nanodisks with the NiAs-type structure were synthesized by thermal decomposition of ferrous chloride and thiourea in oleylamine. The Mössbauer spectroscopy and magnetic measurements data indicate that a mixture of antiferromagnetic (AFM) and ferrimagnetic (FRM) phases with the NC (N ≥ 3) and 2C-type superstructures is present in the Fe1?x S compound at temperatures between 80 K and Néel temperature T N. At T < 370 K, the AFM phase prevails over the FRM phase. At T > 370 K, a redistribution of iron vacancies takes place, and the vacancy ordering transforms from the NC (N ≥ 3) to 2C-type which essentially increases the magnetization with maximum value at 470 K. Heating the sample above the Néel temperature 565 K leads to a random distribution of vacancies, and this state is quenched upon subsequent cooling of the sample to 300 K. This gives rise to a pure AFM structure with a zero magnetic moment due to a total compensation of the moments in neighboring iron layers. Thus, the high-temperature redistribution of cation vacancies leads to irreversible magnetic transformations in the Fe1?x S nanoparticles.  相似文献   

8.
The seven and nine dimensional geometries associated with certain classes of supersymmetric AdS 3 and AdS 2 solutions of type IIB and D = 11 supergravity, respectively, have many similarities with Sasaki-Einstein geometry. We further elucidate their properties and also generalise them to higher odd dimensions by introducing a new class of complex geometries in 2n + 2 dimensions, specified by a Riemannian metric, a scalar field and a closed three-form, which admit a particular kind of Killing spinor. In particular, for n ≥ 3, we show that when the geometry in 2n + 2 dimensions is a cone we obtain a class of geometries in 2n + 1 dimensions, specified by a Riemannian metric, a scalar field and a closed two-form, which includes the seven and nine-dimensional geometries mentioned above when n = 3, 4, respectively. We also consider various ansätze for the geometries and construct infinite classes of explicit examples for all n.  相似文献   

9.
Density functional theory (DFT) has been applied to study the geometrical and electronic structures and the catalytic properties for NO oxidation of pure Pt and PtAu clusters. The calculated results suggest that Pt10 clusters shows the most stable structure among the pure Pt n (n = 2–13) clusters with the local maximum Δ2 E value. The doping of Au atoms reduces the stability of the clusters, and Pt6Au4 cluster has the most stable structure among Pt10?n Au n (n = 1–7) clusters, due to the closest band centers between Pt and Au atoms (0.83 eV) and the obvious s–p resonance peaks near the Fermi level. Pt6Au4 cluster displays the strongest activation of O2 molecules among Pt10?n Au n (n = 0–7) clusters, owing to the clear overlap between O 2p and Pt 6 s and Au 6 s near the Fermi level, and the more positive d band center than the others. The interaction between NO and metals changes slightly in NO/Pt10-nAun (n = 2–7) systems, which is weaker than that in NO/Pt9Au system, as a result of the decreasing resonance peaks of sp hybridization near the Fermi level. Compared to pure Pt10 cluster, the lower energy barriers and larger reaction energies on Pt6Au4 cluster suggest a higher catalytic activity of PtAu cluster for the O2 dissociation and NO oxidation reactions. Our study provides atomic-scale insights into the nature of the interfacial effect that determines NO oxidation on PtAu cluster catalysts.  相似文献   

10.
Cobalt ferrite, CoFe2O4, nanoparticles in the size range 2–15 nm have been prepared using a non-aqueous solvothermal method. The magnetic studies indicate a superparamagnetic behavior, showing an increase in the blocking temperatures (ranging from 215 to more than 340 K) with the particle size, D TEM. Fitting M versus H isotherms to the saturation approach law, the anisotropy constant, K, and the saturation magnetization, M S, are obtained. For all the samples, it is observed that decreasing the temperature gives rise to an increase in both magnetic properties. These increases are enhanced at low temperatures (below ~160 K) and they are related to surface effects (disordered magnetic moments at the surface). The fit of the saturation magnetization to the T 2 law gives larger values of the Bloch constant than expected for the bulk, increasing with decreasing the particle size (larger specific surface area). The saturation magnetization shows a linear dependence with the reciprocal particle size, 1/D TEM, and a thickness of 3.7 to 5.1 Å was obtained for the non-magnetic or disordered layer at the surface using the dead layer theory. The hysteresis loops show a complex behavior at low temperatures (T ≤ 160 K), observing a large hysteresis at magnetic fields H > ~1000 Oe compared to smaller ones (H ≤ ~1000 Oe). From the temperature dependence of the ac magnetic susceptibility, it can be concluded that the nanoparticles are in magnetic interaction with large values of the interaction parameter T 0, as deduced by assuming a Vogel–Fulcher dependence of the superparamagnetic relaxation time. Another evidence of the presence of magnetic interactions is the almost nearly constant value below certain temperatures, lower than the blocking temperature T b, observed in the FC magnetization curves.  相似文献   

11.
The structure, stability, and electronic properties of Pd n Au (n = 3~20) clusters are studied by density functional theory. The results show that the clusters studied here prefer three-dimensional structures even with very small atom number. It is found that the binding energies of Pd n Au clusters are higher than the corresponding pure Pd n clusters with the same atom number. Most Pd n Au clusters studied here are magnetic with magnetic moments ranging from 1.0 to 7.0 μ B. The dissociation energies of Pd atoms are lower than the doped gold atom, that is the doped Au atom will increase the mother clusters stability and activity.  相似文献   

12.
We calculate the optical Hall conductivity within the Kubo formalism for systems with gapped spectral nodes, where the latter have a power-law dispersion with exponent n. The optical conductivity is proportional to n and there is a characteristic logarithmic singularity as the frequency approaches the gap energy. The optical Hall conductivity is almost unaffected by thermal fluctuations and disorder for n = 1, whereas disorder has a stronger effect on transport properties if n = 2.  相似文献   

13.
On the basis of the electromagnetic response of high frequency relic gravitational waves (HFRGWs), we research on more accurate calculation of signal (i.e. transverse perturbative photon flux (PPF)) and background photons flux (BPF) in the sycro-resonance electromagnetic system, which consists of Gaussian beam (GB), a static magnetic field and fractal membranes. According to the relationship between frequency of gravitational waves and its dimensionless amplitude, we focus on the HFRGWs with ν g  = 2.9 GHz, h ~ 10?30 in the pre-big bang and quintessential inflationary models. The results show the peak value of the transverse BPF (~ 1020 s?1) is around |x| = 0.08 m, where |x| is the transverse distance to the longitudinal symmetrical surface of the GB, while the maximum transverse PPF always appears at x = 0 (\({N^{(1)}_{x} \sim 2.60\times10^{2}\,{\rm s}^{-1}}\) with the optimal phase difference between the GB and the resonant component of the HFRGWs δ = (n + 0.9)π, n = 0, 1, 2 . . .). However, the observable PPF should be ~ 1.19 × 102 s?1 because of the stochastic nature of the HFRGWs’ phase. Since the decay speed of BPF is much quicker than PPF, it is hopeful to figure out the signal in some optimal regions. Moreover, we compare the decay speed of BPF and PPF in nature mode, and find the threshold value of x where PPF exceeds to BPF. It demonstrates that the limitation of our detection sensitivity comes from the strength of PPF rather than swamping by BPF. On the other hand, with the fractal membrane, the comparison between BPF and PPF provides the optimal detection area \({x\in[0.28,1]}\) m. In addition, through the calculation of shot noise and conservative estimation, we find that our sensitivity is h = 10?26 in 4 months signal accumulate time.  相似文献   

14.
We show that, for the asymptotically strong (super-Schwinger) magnetic field B exceeding the critical value Bcr=m2c3/eh=4.4×1013G, the vacuum polarization effects become important not only in the γ-range, but also for softer electromagnetic quanta, including X-rays and optical photons, and for electromagnetic waves of radio frequencies. This is a consequence of the linearly growing term ?B/Bcr present in the vacuum polarization in an asymptotically strong magnetic field. The results may be essential in studying reflection, refraction, and splitting of X-rays, light and radio waves by magnetic fields of magnetars, and in considering emission of such waves by charged particles.  相似文献   

15.
Parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) have been recently used to accelerate data acquisition process in MRI. Matrix inversion (for rectangular matrices) is required to reconstruct images from the acquired under-sampled data in various pMRI algorithms (e.g., SENSE, GRAPPA) and CS. Singular value decomposition (SVD) provides a mechanism to accurately estimate pseudo-inverse of a rectangular matrix. This work proposes the use of Jacobi SVD algorithm to reconstruct MR images from the acquired under-sampled data both in pMRI and in CS. The use of Jacobi SVD algorithm is proposed in advance MRI reconstruction algorithms, including SENSE, GRAPPA, and low-rank matrix estimation in L + S model for matrix inversion and estimation of singular values. Experiments are performed on 1.5T human head MRI data and 3T cardiac perfusion MRI data for different acceleration factors. The reconstructed images are analyzed using artifact power and central line profiles. The results show that the Jacobi SVD algorithm successfully reconstructs the images in SENSE, GRAPPA, and L + S algorithms. The benefit of using Jacobi SVD algorithm for MRI image reconstruction is its suitability for parallel computation on GPUs, which may be a great help in reducing the image reconstruction time.  相似文献   

16.
We consider a polymer with configuration modeled by the path of a Markov chain, interacting with a potential u + V n which the chain encounters when it visits a special state 0 at time n. The disorder (V n ) is a fixed realization of an i.i.d. sequence. The polymer is pinned, i.e. the chain spends a positive fraction of its time at state 0, when u exceeds a critical value. We assume that for the Markov chain in the absence of the potential, the probability of an excursion from 0 of length n has the form \({n^{-c}\varphi(n)}\) with c ≥  1 and φ slowly varying. Comparing to the corresponding annealed system, in which the V n are effectively replaced by a constant, it was shown in [1,4,13] that the quenched and annealed critical points differ at all temperatures for 3/2 < c < 2 and c > 2, but only at low temperatures for c < 3/2. For high temperatures and 3/2 < c < 2 we establish the exact order of the gap between critical points, as a function of temperature. For the borderline case c = 3/2 we show that the gap is positive provided \({\varphi(n) \to 0}\) as n → ∞, and for c > 3/2 with arbitrary temperature we provide an alternate proof of the result in [4] that the gap is positive, and extend it to c = 2.  相似文献   

17.
This work aimed at determining conditions that would allow us to control the size of the NPs and create a system with characteristics apt for biomedical applications. We describe a comprehensive study on the synthesis and physical characterization of two highly sensitive sets of triethylene glycol (TREG) and polyethylene glycol (PEG)-coated superparamagnetic iron oxide nanoparticles (SPIONs) to be evaluated for use as magnetic resonance (MR) contrast agents. The ferrofluids demonstrated excellent colloidal stability in deionized water at pH 7.0 as indicated by dynamic light scattering (DLS) data. The magnetic relaxivities, r 2, were measured on a 1.5 T clinical MRI instrument. Values in the range from 205 to 257 mM?1 s?1 were obtained, varying proportionally to the SPIONs’ sizes and coating nature. Further in vitro cell viability tests and in vivo biodistribution analyses of the intravenously administered nanoparticles showed that the prepared systems have good biocompatibility and migrate to several organs, mainly the meninges, spleen, and liver. Based on these results, our findings demonstrated the potential utility of these nanosystems as clinical contrast agents for MR imaging.  相似文献   

18.
In the classical Erd?s–Rényi random graph G(np) there are n vertices and each of the possible edges is independently present with probability p. The random graph G(np) is homogeneous in the sense that all vertices have the same characteristics. On the other hand, numerous real-world networks are inhomogeneous in this respect. Such an inhomogeneity of vertices may influence the connection probability between pairs of vertices. The purpose of this paper is to propose a new inhomogeneous random graph model which is obtained in a constructive way from the Erd?s-Rényi random graph G(np). Given a configuration of n vertices arranged in N subsets of vertices (we call each subset a super-vertex), we define a random graph with N super-vertices by letting two super-vertices be connected if and only if there is at least one edge between them in G(np). Our main result concerns the threshold for connectedness. We also analyze the phase transition for the emergence of the giant component and the degree distribution. Even though our model begins with G(np), it assumes the existence of some community structure encoded in the configuration. Furthermore, under certain conditions it exhibits a power law degree distribution. Both properties are important for real-world applications.  相似文献   

19.
Plasma equilibria are investigated numerically, using the ACCOME and ASTRA codes, on the COMPASS-D tokamak (R 0 = 0:56 m, a = 0:17 m, B T = 1:2 T, I p = 200 kA, k = 1:7, δx = 0:4) for the planned Neutral Beam Injection (NBI) and Low Hybrid Current Drive (LHCD) systems. The LH system provides P LH = 0:4 MW at n = 2:1 and f LH = 1:3 GHz. The NBI system has two 40 keV deuterium beams in co-or counter-directions with a total power of 0.6 MW. The COMPASS-D tokamak can typically operate in two configurations-single null divertor (SND) and single null divertor with a higher triangularity (SNT). Higher triangularity provides access to higher confinement and improved stability, and leads to larger n up-shifts for better slow LH wave absorption.We investigate the range of densities n = 2 ÷ 6 × 1019 m?3. Both the LH and NB driven currents decrease with density. The magnetic shear reverses with off-axis beam incidence. In the given plasma parameter range, typically up to 60 kA of bootstrap current is driven and with NB co-injection up to 80 kA of NB current is driven. LHCD is weak at f = 1:3 GHz and BT = 1:2 T, but at n = 3 × 1019 m?3 the LH driven current is about 40 kA, so that the required plasma current of 200 kA is supported almost non-inductively.  相似文献   

20.
Manganese oxides of spinel structure, LiMn2O4, Li1-x Ni x Mn2O4 (0.25 ≤ x≤ 0.75), and NiMn2O4, were studied by EDS, XRD, SEM, magnetic (M-H, M-T), and XPS measurements. The samples were synthesized by an ultrasound-assisted sol-gel method. EDS analysis showed good agreement with the formulations of the oxides. XRD and Rietveld refinement of X-ray data indicate that all samples crystallize in the Fd3m space group characteristic of the cubic spinel structure. The a-cell parameter ranges from a = 8.2276 Å (x = 0) to a = 8.3980 Å (x = 1). SEM results showed particle agglomerates ranging in size from 2.3 μm (x = 0) down to 0.8 μm (x = 1). Hysteresis magnetization vs. applied field curves in the 5–300K range was recorded. ZFC-FC measurements indicate the presence of two magnetic paramagnetic-ferrimagnetic transitions. The experimental Curie constant was found to vary from 5 to 7.1 cm3 K mol?1 for the range of compositions studied (0 ≤ x ≤ 1). XPS studies of these oxides revealed the presence of Ni2+, Mn3+, and Mn4+. The experimental Ni/Mn atomic ratios obtained by XPS were in good agreement with the nominal values. A linear relationship of the average oxidation state of Mn with Ni content was observed. The oxide’s cation distributions as a function of Ni content from x = 0 ?Li+[Mn3+Mn4+]O4 to x = 1 \( {\mathrm{Ni}}_{0.35}^{2+}{\mathrm{Mn}}_{0.65}^{3+}\left[{\mathrm{Ni}}_{0.65}^{2+}\right.\left.{\mathrm{Mn}}_{1.35}^{3+}\right]{\mathrm{O}}_4 \) were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号