首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Metal nanoparticle dimers with controllable gap distance have attracted considerable attention because of their promising application in plasmonics. Generally, gaps with nanometer or subnanometer dimensions generate localized surface plasmon resonance (LSPR) coupling effect, thus contributing to a strong electromagnetic field for improving surface enhanced Raman scattering (SERS) effect. Here, we developed a facile approach to fabricate Au@SiO2 dimers through the steric hindrance effect, in which the SiO2 shell functioned as a block and a rigid dithiol molecule was employed as linker. The thickness of the SiO2 shell played a critical role in improving the yield of dimers. The dimerization efficiency increased significantly as the shell thickness decreased to ~1 nm. When 1,4‐benzenedithiol was used as linker molecule, the yield of dimers was ~30%. Few dimers were obtained when mecaptobenzonic acid was used as linker. A thicker shell is associated with a low yield of dimer, whereas a thinner shell resulted in the formation of multimers and linear structures. The low number of linker molecules on the exposed area of monodisperse single nanoparticles and the lack of LSPR coupling effect (‘hot spots’) resulted in the disappearance of SERS signals of the linkers. The estimated SERS enhancement factor was about eight fold because of the strong coupling effect in the gap of the dimer with the distance of the dithiol molecular length. From the above results, SERS combined with SEM could be developed into powerful tools for monitoring the formation of dimers and positioning of single dimers. It may aid the control of assembly of Au nanoparticles and in probing key issues about SERS enhancements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
银纳米颗粒阵列的表面增强拉曼散射效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
程自强  石海泉  余萍  刘志敏 《物理学报》2018,67(19):197302-197302
利用具有高密度拉曼热点的金属纳米结构作为表面增强拉曼散射(SERS)基底,可以显著增强吸附分子的拉曼信号.本文通过阳极氧化铝模板辅助电化学法沉积制备了高密度银(Ag)纳米颗粒阵列;利用扫描电子显微镜和反射谱表征了样品的结构形貌和表面等离激元特性;用1, 4-苯二硫醇(1, 4-BDT)为拉曼探针分子,研究了Ag纳米颗粒阵列的SERS效应.通过优化沉积时间,制备出高SERS探测灵敏度的Ag纳米颗粒阵列,检测极限可达10~(-13)mol/L;时域有限差分法模拟结果证实了纳米颗粒间存在强的等离激元耦合作用,且发现纳米颗粒底端的局域场增强更大.研究结果表明Ag纳米颗粒阵列可作为高效的SERS基底.  相似文献   

3.
We investigate the plasmonic enhancement arising from bimetallic (Au/Ag) hierarchical structure and address the fundamental issues relating to the design of multilayered nanostructures for surface‐enhanced Raman scattering (SERS) spectroscopy. SERS‐active nanosphere arrays with Ag underlayer and Au overlayer were systematically constructed, with the thickness of each layer altered from 40 to 320 nm. The SERS responses of the resultant bimetallic structures were measured with 2‐naphthalenethiol dye as the test sample. The results confirm the dependency of SERS enhancement on the thickness ratio (Au : Ag). Compared with Au‐arrays, our optimized bimetallic structures, which exhibit nanoprotrusions on the nanospheres, were found to be 2.5 times more SERS enhancing, approaching the enhancement factor of an Ag‐array. The elevated SERS is attributed to the formation of effective hot‐spots associated with increased roughness of the outer Au film, resulting from subsequent sputtering of Au granules on a roughened Ag surface. The morphology and reflectance studies suggest that the SERS hot‐spots are distributed at the junctions of interconnected nanospheres and over the nanosphere surface, depending on the thickness ratio between the Au and Ag layers. We show that, by varying the thickness ratio, it is possible to optimize the SERS enhancement factor without significantly altering the operating plasmon resonance wavelength, which is dictated solely by the size of the underlying nanospheres template. In addition, our bimetallic substrates show long‐term stability compared with previously reported Ag‐arrays, whose SERS efficiency drops by 60% within a week because of oxidation. These findings demonstrate the potential of using such a bimetallic configuration to morphologically optimize any SERS substrate for sensing applications that demand huge SERS enhancement and adequate chemical stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A three‐dimensional surface‐enhanced Raman scattering (SERS) substrate via the self‐assembly of properly sized Au nanoparticles in anodic aluminum oxide templates was designed and prepared. Au nanoparticles first underwent hydrophobic surface modification. Then, the hydrophobic Au nanoparticles self‐assembled, aggregated and formed many hot spots in the anodic aluminum oxide templates through a supramolecular interaction. We chose thiophenol as a probe molecule to evaluate the SERS enhancement ability of this three‐dimensional substrate. The enhancement factor was calculated to be 4.6 × 106 under the radiation of a 785‐nm laser. By further comparing SERS signals from different points on the same substrate, we confirmed that this substrate possessed good reproducibility and could be applied for SERS detection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A surface‐enhanced Raman spectroscopy (SERS) detection method that allows dynamic on‐demand generation of SERS substrates at locations of interest for in situ molecular sensing is demonstrated. Thermal convection and thermophoresis, which are both generated in a laser‐induced temperature gradient, are used to accumulate suspended plasmonic nanostructures to form 3D SERS substrate. Raman signals of melamine, which is used as a model analyte, increase to ≈117‐fold within 2 min of laser irradiation because of the accumulation. In addition, it is demonstrated that the accumulation of the nanostructures is reversible, and that reproducible SERS effects can be obtained during a repeated heating and cooling process. Because of the capability of on‐demand generation of a high density of SERS hot spots at different locations in solution, this particle manipulation and SERS detection method is applicable to monitor temporal and spatial variations of the concentrations of molecules. The complexity of the detection system remains the same when using this method since all the measurements are performed with a conventional Raman system and simple fluid channels. The required temperature gradient is generated by the laser used to excite Raman signals, and no nanofabricated substrates and complicated microfluidic or optical components are needed.  相似文献   

6.
膜结构对金纳米线阵列表面增强拉曼散射的影响   总被引:1,自引:0,他引:1  
金纳米线阵列作为表面增强拉曼散射的基底能够产生有效的增强效应,金纳米线阵列通过金线之间的电场耦合产生增强的拉曼信号。在实验中,制备出金纳米线阵列与金纳米刷,两种样品结构不同,金纳米刷的一面带有金膜。用巯基吡啶作为探针分子,金纳米刷的SERS实验显示出很好的增强效应,增强因子为106,不同位点的SERS谱具有区域不均一的特征。而相同实验条件下的金纳米线阵列的增强因子只有102。光学吸收谱表明这两种结构均发生了共振吸收增强电场,对其结构的分析表明,这两种结构具有不同的电场局域化分布,同时金纳米刷中金线上端强烈的电场耦合,这是其具有更好的增强效用的原因。同时,4-MP的表面增强拉曼谱的变化特征体现了化学增强效应的影响。  相似文献   

7.
表面增强拉曼散射光谱(SERS)已用于环境监测、生物医药、食品卫生等领域,而高活性SERS基底是表面增强拉曼散射光谱技术应用的关键。TiN作为新型等离子材料具有较强的SERS性能,同时化学稳定性及生物相容性较好,但其SERS性能不如贵金属金强。该研究采用氨气还原氮化法和电化学沉积法,在TiN薄膜表面沉积贵金属Au纳米颗粒制备出Au/TiN复合薄膜。在Au/TiN复合薄膜中单质Au和TiN两种物相共存;随着电化学沉积时间延长,TiN薄膜表面单质金纳米颗粒数量逐渐增多,金纳米颗粒尺寸增大,颗粒间距减小。由于金与TiN两者的本征表面等离子共振耦合作用,Au/TiN复合薄膜的共振吸收峰发生了偏移。利用罗丹明6G为拉曼探针分子,对Au/TiN复合薄膜进行SERS性能分析,发现Au/TiN复合薄膜上的R6G探针分子的拉曼峰信号强度随沉积时间延长呈现先增大后减小的规律;当电化学沉积时间为5 min时,R6G拉曼信号峰较高,复合薄膜样品的SERS活性最大。将Au/TiN复合薄膜和Au薄膜分别浸泡在10-3,10-5,10-7,10-8及10-9 mol·L-1 R6G溶液5 min,进行检测限分析,发现Au/TiN复合薄膜检测极限达10-8 mol·L-1,增强因子达到8.82×105,与Au薄膜和TiN薄膜相比,Au/TiN复合薄膜上对R6G探针分子SERS活性最高。这得益于Au/TiN复合膜中表面等离子体产生的耦合效应,使得局域电磁场强度增强,从而引起R6G探针分子拉曼信号增强。通过2D-FDTD模拟电场分布发现Au/TiN,Au及TiN薄膜具有电场增强作用,其中Au/TiN复合薄膜的增强作用尤为显著,这也证实了氮化钛与金纳米颗粒之间存在耦合效应。另外发现TiN与Au之间可能存在电荷转移,促进了4-氨基苯硫酚氧化反应,进而证实了TiN与Au薄膜的协同作用。此外,Au/TiN复合薄膜均匀性较好,相对平均偏差仅为7.58%。由此可见,采用电化学沉积制备的Au/TiN复合薄膜具有作为SERS基底材料的应用潜力。  相似文献   

8.
In this paper, we discuss some advanced theoretical aspects of electromagnetic enhancement factors (EFs) in surface‐enhanced Raman scattering (SERS). We focus in particular on the influence of surface selection rules (SSRs) on SERS EFs at hot spots, and the determination of SERS depolarization ratios. Both aspects could be viewed as secondary (compared to the overall magnitude of the SERS EF), but are nevertheless observable experimentally and crucial for a fundamental understanding of SERS. They also share the property that they cannot be studied within the commonly used |E | 4 approximation to the SERS EFs, and appropriate tools are developed here to make predictions beyond this approximation in the case of a SERS hot spot. In addition, theoretical estimates of different types of (previously defined) EFs are provided, and their origins discussed for the typical example of a SERS substrate dominated by SERS hot spots. Finally, experimental measurements of SERS depolarization ratios are presented to support the theoretical predictions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Atomically precise Au nanoclusters (NCs) have emerged as fascinating fluorescent nanomaterials and attracted considerable research interest in both fundamental research and practical applications. Due to enhanced quantum confinement, they possess extraordinary optical, electronic, and magnetic properties and therefore are very promising for a wide range of applications, including biosensing, bioimaging, catalysis, photonics, and molecular electronics. Remarkable progress has been reported for the fundamental understanding, synthesis techniques, and applications. In this review, the updated advances are summarized in Au NCs, including synthesis techniques, optical properties, and applications. In particular, we focus on the optical properties and electron dynamic processes. In addition, the progress in other noble metallic NCs is included in this Review, such as Ag, Cu, Pt, and alloy, which have attracted much research interest recently. Finally, an outlook is presented for such fascinating nanomaterials in both aspects of future fundamental research and potential applications.  相似文献   

10.
表面增强拉曼散射(SERS)是一种先进的表面分析技术,可以极大提高吸附在金属表面或附近分子的拉曼散射信号。SERS技术由于其快速准确、灵敏度高、选择性好、样品制备要求低等特点,成为当前的研究热点,在化学、食品、生物、医疗等领域展现出重要的应用前景。而利用SERS技术作为一种常规分析和诊断工具面临的一个主要挑战是如何制备均匀、可重复、稳定的活性基底。打印技术操作简单、效率高、成本低,有助于设计等离激元纳米结构。通过优化“热点”增强电磁场,获得重复性好、稳定性高、增强能力强的SERS活性基底。近年来,印刷技术逐渐被应用于SERS基底的制备。主要综述了制备SERS基底的几种常用印刷技术,包括喷墨印刷、凹版印刷、丝网印刷等。分析了衬底表面润湿性、干燥温度、油墨粘度、表面张力、溶剂等因素对SERS性能的影响。总结了印刷技术制备SERS基底的研究进展,并对其潜在应用和未来发展作了展望。  相似文献   

11.
杨晶亮  李若平  韩俊鹤  黄明举 《中国物理 B》2016,25(8):83301-083301
We use Au@SiO_2 nanoparticles(NPs) to systematically and comprehensively study the relationship between nanostructure and activity for surface-enhanced Raman scattering. Calculation simulation using the finite different time domain method verifies the experiment results and further reveals that the particle size and the distance between the NPs play vital roles in the surface-enhanced Raman scattering(SERS). Furthermore, in order to better simulate the real experiment, a Au@SiO_2 nanosphere dimer is placed on the silicon substrate and Au substrate, separately. The simulation results show that the large EM field coupling is due to the "hot spots" transferred from the NP–NP gaps to NP–surface of metal gaps,meanwhile, more "hot spots" occur. We also find that the signal intensity strongly depends on the position of the probe molecule. This work provides a better understanding of EM field enhancement.  相似文献   

12.
Nanoparticles of noble metals, such as gold and silver, exhibit unique and tunable optical properties on account of their surface plasmon resonance. In particular, gold nanoparticles on silicon substrates are attractive for future nanoscale sensors and optical devices due to their resistance to oxidation and due to their electrical and optical properties. In this study, we developed a nanostructured gold/macroporous silicon (Au/PS) substrate capped with 11-mercaptoundecanoic acid (11-MUA) with ultra-sensitive detection properties achieved in characterization, an approach based on surface-enhanced Raman scattering (SERS). Surface-enhanced Raman scattering allows us to detect substances at a low concentration level and to observe structural details of a thiol molecule bonded to small film thicknesses. Raman measurements were carried out at 514 nm and 785 nm. In order to emphasize the effect of the Si microstructuration on the efficiency of this new substrate (Au/PS) proposed for SERS experiments, the same molecule (11-MUA) was adsorbed on it as well as on gold/atomically flat silicon (Au/Si) and on commercial Klarite (Mesophotonics) substrates. Systematic studies realized by Raman spectroscopy, electron microscopy, and X-ray spectroscopy show the influence of silicon substrate texturing and metallic deposition conditions, including time and temperature on the optical phenomena.  相似文献   

13.
This paper presents, for the first time, noninvasive imaging of a livingplant using biocompatible carbon‐encapsulated Au Ag nanoparticles (NPs) using micro‐Raman spectroscopy (MRS). A convenient and controllable hydrothermal synthetic route was developed to synthesize the layer‐by‐layer triplex Au Ag C core–shell NPs, which can incorporate the reporter molecule 4‐mercapto benzoic acid (4‐MBA). A unique approach was devised to deliver the carbon‐encapsulated surface‐enhanced Raman scattering (SERS) tags into the leaf of Nicotiana benthamiana. In vivo SERS mapping was subsequently performed to monitor the distribution of tags inside the leaf, which successfully avoided interference of autofluorescence from plant tissue. The imaging modality reported here and further the bio‐functionalized carbon‐encapsulated SERS NPshold significant potential as a strategy forbiochemical imaging in living plantsin a noninvasive and nontoxic manner, whichmight open up exciting opportunities for plant sciences. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
由于贵金属纳米粒子独特的光学性质,基于衬底的贵金属纳米粒子薄膜表面增强拉曼散射技术在分子生物学和医学免疫分析等研究领域中显现出非常好的应用优势和潜力。本项研究工作应用柠檬酸纳作聚集剂诱导水溶液中对巯基苯甲酸修饰的Ag纳米粒子聚集,并应用以此形成的"热点"增强SERS光谱,获得了对巯基苯甲酸修饰的Ag纳米粒子聚集非常有效的4-MBA分子的SERS信号,为未来建立生物待测物的分析检测奠定前期基础。结果证明,水溶液中的Ag纳米粒子的聚集形成的"热点"具有非常好的SERS光谱增强效应。  相似文献   

15.
Plasmonic gold nanostars offer a new platform for surface‐enhanced Raman scattering (SERS). However, due to the presence of organic surfactant on the nanoparticles, SERS characterization and application of nanostar ensembles in solution have been challenging. Here, we applied our newly developed surfactant‐free nanostars for SERS characterization and application. The SERS enhancement factors (EF) of silver spheres, gold spheres and nanostars of similar sizes and concentration were compared. Under 785 nm excitation, nanostars and silver spheres have similar EF, and both are much stronger than gold spheres. Having plasmon matching the incident energy and multiple ‘hot spots’ on the branches bring forth strong SERS response without the need to aggregate. Intracellular detection of silica‐coated SERS‐encoded nanostars was also demonstrated in breast cancer cells. The non‐aggregated field enhancement makes the gold nanostar ensemble a promising agent for SERS bioapplications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, gold nanobones with the length from 50 to 70 nm were synthesized by a seed-mediated method. The plasmonic optical properties and the roles of gold seed amount in regulating the negative curvatures of the end surfaces of the gold nanobones have also been studied. Compared with the gold nanorods, a new middle surface plasmon resonance (SPR) peak appears in the absorption spectra due to the negative curvatures on the end surfaces of the gold nanobones. What is more, the surface enhanced Raman scattering (SERS) activities of gold nanobones are much stronger than that of gold nanorods. By controlling the amount of the gold seed, the wavelength of the middle SPR peak can be adjusted between 560 and 650 nm, and the corresponding negative curvature of the end surfaces could also be fine tuned. When the amount of gold seed reaches saturation, the end surfaces of nanobones have the strongest negative curvature, which results in the greatest SERS activity. This improved SERS has been attributed to the negative curvature-induced formation of the antenna dimers. The orientation of plasmon coupling between the antenna dimers is perpendicular to the nanobones. Thus, the hot spots at the ends of nanobones could always be created when the excitation beam polarization is either parallel or perpendicular to the nanobones. This negative curvature-dependent SERS enhancement lays the foundation for the extensive application of gold nanobones in SERS.  相似文献   

17.
Arrays of metal nanoparticles with nanometer-scale gaps between the particles is highly interesting for plasmonic field enhancement applications. We report a simple method to fabricate arrays of closely spaced Au particles with inter-particle separation down to 20 nm. We used extreme ultraviolet interference lithography (EUV-IL) and a mechanical press to fabricate two-dimensional arrays of Au nanoparticles. Lithographically produced particle arrays were modified by hot pressing in a nanoimprint machine and the gap was varied in a range from 50 nm to below 20 nm. Optical measurement shows two resonances at 520 nm and 620 nm, with the latter gaining strength as the gap is reduced. The experimental and theoretical investigations using a FDTD algorithm demonstrate that the low-energy resonance can be assigned to a collective surface plasmon resonance arising from the strong near-field coupling between the nanoparticles. Surface Enhanced Raman Spectroscopy (SERS) experiments performed on a model molecule (BPE) show a large gain in signal intensity as a result of the reduced gaps between the particles.  相似文献   

18.
In this work, we demonstrated a bottom‐up growth of Ag@SiO2/Ag core‐shell nanosphere arrays with tunable SiO2 interior insulator and the optimized surface‐enhanced Raman scattering (SERS) substrate based on a nanostructure performed with both high sensitivity and large‐area uniformity. Their morphological, structural, and optical properties were characterized, and the induced SERS activities were investigated theoretically by the FDTD simulation and experimentally using analyte molecules. An ultrathin SiO2 shell with tunable thickness can be synthesized pinhole‐free by a chemical vapor deposition, working as an interior insulator between the Ag core and Ag out‐layer coating. A detection limit as low as 10−12 M and an enhancement factor up to 3 × 107 were obtained, and the SERS signal was highly reproducible with small standard deviation. The method opened up a way to create a new class of SERS activity sensor with high‐density ‘hot spots’, and it may play an important role in device design and the corresponding biological and food safety monitoring applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
在室温下,以硝酸银为银源,抗坏血酸为还原剂,通过调节表面活性剂聚乙烯吡络烷酮的浓度,实现对花状银纳米颗粒的可控制备。利用扫描电子显微镜、原子力显微镜、X射线衍射和X射线能谱等手段检测并分析了材料的形貌结构和成分组成。实验结果表明,当聚乙烯吡络烷酮的浓度为0.1 mol/L时,所制备花状银纳米颗粒的表面结构达到最精细的状态且颗粒的尺寸达到微米量级,适合对单颗粒进行定位与光学性质研究。以结构最优化的花状银纳米颗粒为表面增强拉曼散射基底材料,以羟基苯甲酸为探针,对单个和少数颗粒的表面增强拉曼散射效应进行了研究,并借助暗场散射光谱分析了基底的表面增强拉曼散射机理。结果显示,该花状银纳米颗粒因其独特的表面结构为拉曼信号增强提供了大量“热点”。良好的拉曼性能以及较低的制备成本表明,该新型表面增强拉曼散射基底具有很大的应用前景。  相似文献   

20.
Anisotropic metallic nanoparticles (NPs) have unique optical properties, which lend them to applications such as surface‐enhanced Raman scattering (SERS) spectroscopy. Star‐shaped gold (Au) NPs were prepared in aqueous solutions by the seed‐mediated growth method and tested for Raman enhancement using 2‐mercaptopyridine (2‐MPy) and crystal violet (CV) probing molecules. For both molecules, the SERS activity of the nanostars was notably stronger than that of the spherical Au NPs of similar size. The Raman enhancement factors (EFs) for 2‐MPy on Au nanostars and nanorods are comparable and estimated as greater than 5 orders of magnitude. However, the enhancement for CV on nanostars was significantly higher than for nanorods, in particular at CV concentrations of 100 nM or lower. This article is a US Government work and is in the public domain in the USA. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号