首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gd-substituted Mn–Zn ferrite nanoparticles of different compositions were synthesized by chemical co-precipitation method. To study the reduction of the Curie temperature (TC) for different samples, their magnetic properties in dependence from the composition and cationic distribution were investigated. An attempt to lower the TC of superparamagnetic particles to the optimal temperature required in magnetic fluid hyperthermia (44–47 °C) was made.  相似文献   

2.
This study reports the simple synthesis of MFe2O4 (where M=Zn, Mn and Co) nanostructures by a thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly(vinyl pyrrolidon) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The pyrolytic behaviors of the polymeric precursor were analyzed by use of simultaneous thermo-gravimetry analyses (TGA) and derivative thermo-gravimetry (DTG) analyses. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands for all the calcined samples. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed that the calcined samples exhibited different types of magnetic behavior. The present study also substantiated that magnetic properties of ferrite nanoparticles prepared by the thermal treatment method, from viewing microstructures of them, can be explained as the results of the two important factors: cation distribution and impurity phase of α-Fe2O3. These two factors are subcategory of the preparation method which is related to macrostructure of ferrite. Electron paramagnetic resonance (EPR) spectroscopy showed the existence of unpaired electrons ZnFe2O4 and MnFe2O4 nanoparticles while it did not exhibit resonance signal for CoFe2O4 nanoparticles.  相似文献   

3.
《Current Applied Physics》2014,14(7):909-915
In this work, a comparison of magnetic and microwave properties between Mn–Sn–Ti substituted SrM ferrite and nanocomposite of Mn–Sn–Ti substituted SrM ferrite–20% volume multi-walled carbon nanotube (MWCNT) has been done. Phase characterization and crystal structure of the synthesized nanoparticles were tested by X-ray diffraction (XRD). Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR) analysis approved that the SrFe12−x(MnSn0.5Ti0.5)x/2O19 nanoparticles were attached on the external surfaces of the MWCNTs. Mӧssbauer spectroscopy (MS) showed the occupancy by non-magnetic Mn2+–Sn4+–Ti4+ cations into the hexagonal lattice structure. Magnetic properties were evaluated by a vibrating sample magnetometer (VSM). The results also indicated that saturation magnetization and coercivity were decreased with an increase in x content and also MWCNTs addition. Microwave absorption properties were investigated by a vector network analyzer (VNA). It was found that with an addition of 20 volume percentage of MWCNTs, the saturation magnetization coupled with coercivity decrease, but reflection loss (RL) increase broadly. Also it proved that with an increase in the thickness of absorption the frequency band shifts from Ku (12–18 GHz) to X (8–12 GHz) band.  相似文献   

4.
Superparamagnetic silica-coated magnetite (Fe3O4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Then silica was coated on the Fe3O4 nanoparticles using a sol–gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu2+, the magnetic silica nanoparticles with immobilized Cu2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.  相似文献   

5.

The structural, morphological, magnetic, dielectric, and gas analyzing properties are studied in CuFe2O4(Mn–CuFe2O4) substituted spinel ferrite nanoparticles synthesized via evaporation and automatic combustion. The obtained nanoparticles are established to possess a spherical shape. The smallest size of Mn–CuFe2O4 (~9 nm) nanoparticles is achieved at using automatic combustion. X-ray diffraction and Mössbauer spectroscopy reveal that the crystal lattice constant and the Mn–CuFe2O4 nanoparticle size are larger at augmenting the annealing temperature from 600 to 900°С. The dielectric permeability and losses of Mn–CuFe2O4 nanoparticles are studied at various synthesis conditions and temperatures of annealing. Various aspects of gas sensibility of synthesized Mn–CuFe2O4 nanoparticles are tested, as well. The maximum response to the presence of liquefied petroleum gas is 0.28 at the optimum working temperature of 300°C for Mn–CuFe2O4 nanoparticles obtained via automatic combustion and it is 0.23 at 250°C for deposited nanoparticles.

  相似文献   

6.
The structure of Mn0.5Zn0.5Fe2O4 spinel ferrite nanoparticles is studied as a function of their size and the experimental conditions of their synthesis using X-ray absorption spectroscopy. The nanoparticles of different sizes down to approximately 2 nm and with a narrow size distribution were synthesized using co-precipitation in reverse microemulsions. Simultaneous refinement of the X-ray absorption fine structure (EXAFS) of three constituting metals shows a migration of Mn and Zn ions to the octahedral site of the spinel lattice compensated by the corresponding migration of the Fe ions. To a smaller extent, Mn ions switch the occupation site already in bulk and in larger nanoparticles, while a sporadic migration of Zn is detected only in the nanoparticles with sizes below approximately 5 nm. X-ray absorption near edge structure (XANES) reveals considerable variations in the position of the Mn K edge, suggesting the average Mn valence in the nanoparticles to be higher than 3+. Annealing at 500 °C relaxes the structure of as-synthesized nanoparticles toward the structure of the ceramic bulk standard. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
A series of Mn–Zn Ferrite nanoparticles (<15 nm) with formula MnxZn1−xFe2O4 (where x=0.00, 0.35, 0.50, 0.65) were successfully prepared by citrate-gel method at low temperature (400 °C). X-ray diffraction analysis confirmed the formation of single cubic spinel phase in these nanoparticles. The FESEM and TEM micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The fractions of Mn2+, Zn2+ and Fe3+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of different ferrite samples are estimated by room temperature micro-Raman spectroscopy. Low temperature Mossbauer measurement on Mn0.5Zn0.5Fe2O4 has reconfirmed the mixed spinel phase of these nanoparticles. Room temperature magnetization studies (PPMS) of Mn substituted samples showed superparamagnetic behavior. Manganese substitution for Zn in the ferrite caused the magnetization to increase from 04 to18 emu/g and Lande's g factor (estimated from ferromagnetic resonance measurement) from 2.02 to 2.12 when x was increased up to 0.50. The FMR has shown that higher Mn cationic substitution leads to increase in dipolar interaction and decrease in super exchange interaction. Thermomagnetic (MT) and magnetization (MH) measurements have shown that the increase in Mn concentration (up to x=0.50) enhances the spin ordering temperature up to 150 K (blocking temperature). Magnetocrystalline anisotropy in the nanoparticles was established by Mossbauer, ferromagnetic resonance and thermomagnetic measurements. The optimized substitution of manganese for zinc improves the magnetic properties and makes these nanoparticles a potential candidate for their applications in microwave region and biomedical field.  相似文献   

8.
Morphological, structural, electronic, and adsorption characteristics of complex oxides such as fumed silica/alumina and silica/titania, fumed silica with deposited oxides of Mg, Ti, Mn, Ni, Cu, Zn and Zr, silica gel with grafted ZrO2, sol-gel titania doped by 3d-metals (Cr, Fe, Mn, V) were compared using adsorption, TEM, AFM, XRD, XPS, Mössbauer and Raman spectroscopy data. It was shown that surface, volume, and phase compositions of oxides, particle size distributions (5 nm-3 μm), specific surface area (SBET ∼ 50-500 m2/g), and porosity (VP ∼ 0.1-2 cm3/g) affected by synthesis technique and subsequent treatment determine electronic structure (bandgap, valence band and core levels structure) of the materials, adsorption of molecules and metal ions as well as other characteristics.  相似文献   

9.
The polymer-pyrolysis route used in this work was to synthesize the copolymeric precursor of the mixed metallic ions and then to pyrolyze the precursor into complex spinel ferrite nanoparticles. Thermogravimetric analysis (TGA) showed that the complex ferrite nanoparticles could be obtained by calcination of their precursors at 500°C. The structures, elemental analyses and particle morphology of the as-calcined products were characterized by powder X-ray diffraction (XRD), ICP-AES, transmission electron microscope (TEM) and electron diffraction (ED) pattern. The results revealed that the as-calcined powders were complex spinel ferrites and the size of those nanoparticles ranged from 10 to 20 nm. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (VSM). The saturation magnetization of the Mn–Zn ferrites was related to the molar ratio of Mn to Zn and increased with the increase of Mn. The complex Co–Mn–Zn ferrite nanoparticles showed a high magnetization of 58 emu/g at the applied field of 10 kOe and a low coercivity of 30 Oe, which indicated that this materials exhibited characteristics of soft ferromagnetism.  相似文献   

10.
This study reports a two-steps route for obtaining magnetic nanoparticles–polysaccharide hybrid materials consisting of Fe3O4, NiFe2O4 and CuFe2O4 nanoparticles synthesis by coprecipitation method in the presence of a soft template followed by coating of ferrite nanoparticles of 8–10-nm size range with polysaccharide type polymers—sodium alginate or chitosan. Magnetic oxide nanoparticles and the corresponding hybrid materials were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy, atomic absorption spectroscopy (AAS), FTIR spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and specific surface area measurements. The vibrating sample magnetometry confirms the superparamagnetic properties of the synthesized ferrites and hybrids. Using this route, the percent of magnetic nanoparticles retained in chitosan-based hybrid materials is nearly double in comparison with that of sodium alginate–based materials. The biological activity tests on Escherichia coli ATCC 25922, Pseudomonas aeroginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Candida scotti microorganisms show the non-toxic properties of prepared hybrid materials.  相似文献   

11.
Spinel nickel zinc ferrite nanowires were successfully prepared in mesoporous silica SBA-15 as a host matrix. The powder was annealed at a range of temperatures (500–900 °C) with heating rate 0.5 °C/min. The required NiZnFe2O4 phase was obtained at 700 °C. The specific surface area SBET data revealed that the surface area of the mesoporous silica after annealing was decreased from 821 to 90 m2/g which indicated that the spinal ferrite fills the channels of mesoporous materials. The one-dimensional spinel nanostructures were characterized by X-ray diffraction, infrared spectroscopy, vibrating sample magnetometer, and transmission electron microscopy before and after a selective removal of the silica template in aqueous solution of NaOH or HF. The presence of SBA-15 lowers the formation temperature of nickel zinc ferrite nanowires compared to the corresponding bulk material. The magnetic properties revealed a high saturation magnetization level (~43 emu/g) for the Ni–Zn nanowires at 900 °C.  相似文献   

12.
Mn–Zn ferrite nanoparticles (Mn1−xZnxFe2O4) are synthesized by a hydrothermal precipitation approach using metal sulfate solution and aqueous ammonia. The analysis methods of XRPD, TEM, TGA, and VSM are used to characterize the magnetic nanoparticles. Through the characterization of the precipitated nanoparticles, the effects of the reacting component proportions and preparation techniques on the Curie temperature, the magnetization, and the size distribution of Mn–Zn ferrite nanoparticles are discussed. Furthermore, the Mn–Zn ferrite nanoparticles are used to prepare ferrofluid. Variation of the magnetic properties of the ferrite nanoparticles with the composition content x of Zn and the magnetic moment of the nanoparticles are discussed.  相似文献   

13.
Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300 °C for 2 h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10-300 K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300 °C for 2 h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile.  相似文献   

14.
Dispersal of nanofillers in polymer electrolytes have shown to improve the ionic properties of Polyethylene oxide (PEO)-based polymer electrolytes in recent times. The effects of different nanoferrite fillers (i.e., Al–Zn ferrite, Mg–Zn ferrite, and Zn ferrite) on the electrical transport properties have been studied here on the composite polymer electrolyte system. The interaction of salt/filler with electrolyte has been investigated by XRD studies. SEM image and infrared spectral studies give an indication of nanocomposite formation. In conductivity studies, all electrolyte systems are seen to follow universal power law. Composition dependence (with ferrite filler) gives the maximum conductivity in [93PEO–7NH4SCN]: X ferrite (where X?=?2% in Al–Zn ferrite, 1% Mg–Zn ferrite, and 1% Zn ferrite) system.  相似文献   

15.
Normally, CoFe2O4 has been known as ferromagnetic ferrite with a quite large magnetic moment. However, since we aim to inject the particles into the human body, we are also interested in ZnFe2O4 because in the human body, Fe and Zn exist, so that adding ZnFe2O4 is safer. In both cases, the nanoparticles are coated by silica in order to get rid of toxicity. Our main purpose is to test whether these nanoparticles affect the contractile function of heart cells. Our results on rat’s heart cells have shown that both Zn and Co ferrites improved the contractility of heart cells. Notably, although both nanoparticles increased contraction and delayed relaxation, Co ferrites induced a greater contraction but with a slower relaxation. We can theoretically argue that the magnetization effects of the quantum dots have a considerable effect on the pulsating properties of the heart cells. Through this effect, the locally applied magnetic field is able to induce as well as turn on/off various regular beating patterns, thus, resetting the heart beatings.  相似文献   

16.
The properties of nanocrystalline Ni0.5Zn0.5Fe2O4 synthesized by an auto-combustion method have been investigated by magnetic measurements and Mössbauer spectroscopy. The as-synthesized single phase nanosized ferrite powder is annealed at different temperatures in the range 673–1,273 K to obtain nanoparticles of different sizes. The powders are characterized by powder X-ray diffraction, vibrating sample magnetometer, transmission electron microscopy and Mössbauer spectroscopy. The as-synthesized powder with average particle size of ~9 nm is superparamagnetic. Magnetic transition temperature increases up to 665 K for the nanosized powder as compared to the transition temperature of 548 K for the bulk ferrite. This has been confirmed as due to the abnormal cation distribution, as evidenced from room temperature Mössbauer spectroscopic studies.  相似文献   

17.
We investigate the particle size dependence of the relaxivity of hydrogen protons in an aqueous solution of iron oxide (Fe3O4) nanoparticles coated in silica for biocompatibility. The T1 and T2 relaxation times for various concentrations of silica-coated nanoparticles were determined by a magnetic resonance scanner. We find that the relaxivity increased linearly with increasing particle size. The T2 relaxivity (R2) is more than 50 times larger than the T1 relaxivity (R1) for the nanoparticle contrast agent, which reflects the fact that the T2 relaxation is mainly influenced by outer sphere processes. The high R2/R1 ratio demonstrates that silica-coated iron oxide nanoparticles may serve as a T2 contrast agents in magnetic resonance imaging with high efficacy.  相似文献   

18.
The magnetic nanoparticles of La0.75Sr0.25MnO3 perovskite manganite with a controlled size were prepared via sol–gel procedure, followed by thermal treatment and subsequent mechanical processing of the resulting raw product. The prepared materials were structurally studied by the XRD and TEM methods and probed by DC magnetic measurements. The nanoparticles of the mean crystallite sizes 11–40 nm exhibit T C in the range of ≈310–347 K and the sample possessing 20-nm crystallites was identified as the most suitable for hyperthermia experiments. In order to obtain a colloidally stable suspension and prevent toxic effects, the selected magnetic cores were further encapsulated into silica shell using tetraethoxysilane. The detailed magnetic studies were focused on the comparison of the raw product, the bare nanoparticles after mechanical processing and the silica-coated nanoparticles, dealing also with effects of size distribution and magnetic interactions. The heating experiments were carried out in an AC field of frequencies 100 kHz–1 MHz and amplitude 3.0–8.9 kA m−1 on water dispersions of the samples, and the generated heat was deduced from their warming rate taking into account experimentally determined thermal losses into surroundings. The experiments demonstrate that the heating efficiency of the coated nanoparticles is generally higher than that of the bare magnetic cores. It is also shown that the aggregation of the bare nanoparticles increases heating efficiency at least in a certain concentration range.  相似文献   

19.
Cobalt ferrite nanoparticles (CoFe2O4) have been synthesized using precipitation in water solution with polyethylene glycol as surfactant. Influence of various synthesis variables included pH, reaction time and annealing temperature on the magnetic properties and particle sizes has also been studied. Structural identification of the samples was carried out using Thermogravimetric and Differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, High resolution transmission electron microscopy. Vibrating sample magnetometer was used for the magnetic investigation of the samples. Magnetic properties of nanoparticles show strong dependence on the particle size. The magnetic properties increase with pH of the precipitating medium and annealing temperature while the coercivity goes through a maximum, peaking at around 25 nm.  相似文献   

20.
Eu(DBM)3Phen-embedded silica nanoparticles were synthesized in water-in-oil (W/O) microemulsion containing aqueous phase of Eu(DBM)3Phen, surfactant Triton X-100, cosurfactant octanol and oil-phase cyclohexane. The size and morphology of the nanoparticles were characterized by transmission electron microscopy (TEM). The low-temperature time-resolved emission spectra indicate that the Eu complex in the silica nanoparticles have longer lifetime than that of the pure complex. Under 355 nm continuous excitation, the nanoparticles show high resistance to photobleaching. The free amino groups were attached to silica surfaces by copolymerization of 3-aminopropyl(triethoxy)silane. Preliminary results demonstrated that the silica-coated Eu complex nanoparticles can be a probe in the detection of biomolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号