首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let H be a finite abelian group of odd order, D be its generalized dihedral group, i.e., the semidirect product of C2 acting on H by inverting elements, where C2 is the cyclic group of order two. Let Ω (D) be the Burnside ring of D, Δ(D) be the augmentation ideal of Ω (D). Denote by Δn(D) and Qn(D) the nth power of Δ(D) and the nth consecutive quotient group Δn(D)/Δn+1(D), respectively. This paper provides an explicit Z-basis for Δn(D) and determines the isomorphism class of Qn(D) for each positive integer n.  相似文献   

2.
3.
A linear differential operator P(x, D) = P(x1,... x n , D1,..., D n ) = ∑αγα(x)Dα with coefficients γα(x) defined in E n is called formally almost hypoelliptic in E n if all the derivatives DνξP(x, ξ) can be estimated by P(x, ξ), and the operator P(x, D) has uniformly constant power in En. In the present paper, we prove that if P(x, D) is a formally almost hypoelliptic operator, then all solutions of equation P(x, D)u = 0, which together with some of their derivatives are square integrable with a specified exponential weight, are infinitely differentiable functions.  相似文献   

4.
Let G be a connected graph with vertex set V(G) = {v1, v2,..., v n }. The distance matrix D(G) = (d ij )n×n is the matrix indexed by the vertices of G, where d ij denotes the distance between the vertices v i and v j . Suppose that λ1(D) ≥ λ2(D) ≥... ≥ λ n (D) are the distance spectrum of G. The graph G is said to be determined by its D-spectrum if with respect to the distance matrix D(G), any graph having the same spectrum as G is isomorphic to G. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their D-spectra.  相似文献   

5.
Let A be an expanding integer n×n matrix and D be a finite subset of ? n . The self-affine set T=T(A,D) is the unique compact set satisfying the equality \(A(T)=\bigcup_{d\in D}(T+d)\). We present an effective algorithm to compute the Lebesgue measure of the self-affine set T, the measure of the intersection T∩(T+u) for u∈? n , and the measure of the intersection of self-affine sets T(A,D 1)∩T(A,D 2) for different sets D 1, D 2?? n .  相似文献   

6.
The paper studies the additive structure of the algebra F(7), i.e., a relatively free associative countably generated algebra with the identity [x1,..., x7] = 0 over an infinite field of characteristic ≠ 2, 3. First, the space of proper multilinear polynomials in this algebra is investigated. As an application, estimates for the codimensions cn = dimFn(7) are obtained, where Fn(7) stands for the subspace of multilinear polynomials of degree n in the algebra F(7).  相似文献   

7.
We prove that simple Lie pencils of rank 1 over an algebraically closed field P of characteristic 0 with operators of left multiplication being derivations are of the form of a sandwich algebra M 3(U,D′), where U is the subspace of all skew-symmetric matrices in M 3(P) and D′ is any subspace containing 〈E〉 in the space of all diagonal matrices D in M 3(P).  相似文献   

8.
Given a finite-dimensional associative commutative algebra A over a field F, we define the structure of a Lie algebra using a nonzero derivation D of A. If A is a field and charF > 3; then the corresponding algebra is simple, presenting a nonisomorphic analog of the Zassenhaus algebra W 1(m).  相似文献   

9.
A linear differential operator P(D) = P(D 1, …, D n ) with constant coefficients is called almost hypoelliptic if all the derivatives D α P of the characteristic polynomial P(ξ 1, …, ξ n ) can be estimated by P. The paper proves that if P is an almost hypoelliptic operator and f is an infinitely differentiable function, square-summable with a definite exponential weight, then any square summable with the same weight solution u of the equation P(D)u = f is again an infinitely differentiable function and P(ξ) → as ξ.  相似文献   

10.
Let D be a division algebra with center F and K a (not necessarily central) subfield of D. An element aD is called left algebraic (resp. right algebraic) over K, if there exists a non-zero left polynomial a 0 + a 1 x + ? + a n x n (resp. right polynomial a 0 + x a 1 + ? + x n a n ) over K such that a 0 + a 1 a + ? + a n a n = 0 (resp. a 0 + a a 1 + ? + a n a n ). Bell et al. proved that every division algebra whose elements are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. In this paper we generalize this result and prove that every division algebra whose all multiplicative commutators are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite provided that the center of division algebra is infinite. Also, we show that every division algebra whose multiplicative group of commutators is left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. Among other results we present similar result regarding additive commutators under certain conditions.  相似文献   

11.
The paper discusses the asymptotic depth of a reversible circuits consisting of NOT, CNOT and 2-CNOT gates. The reversible circuit depth function D(n, q) is introduced for a circuit implementing a mapping f: Z2n → Z2n as a function of n and the number q of additional inputs. It is proved that for the case of implementation of a permutation from A(Z2n) with a reversible circuit having no additional inputs the depth is bounded as D(n, 0) ? 2n/(3log2n). It is also proved that for the case of transformation f: Z2n → Z2n with a reversible circuit having q0 ~ 2n additional inputs the depth is bounded as D(n,q0) ? 3n.  相似文献   

12.
Realization of Boolean functions by circuits is considered over an arbitrary infinite complete basis. The depth of a circuit is defined as the greatest number of functional elements constituting a directed path from an input of the circuit to its output. The Shannon function of the depth is defined for a positive integer n as the minimal depth D B (n) of the circuits sufficient to realize every Boolean function on n variables over a basis B. It is shown that, for each infinite basis B, either there exists a constant β ? 1 such that D B (n) = β for all sufficiently large n or there exist an integer constant γ ? 2 and a constant δ such that log γ n ? D B (n) ? log γ n + δ for all n.  相似文献   

13.
We construct quantum integrable systems associated with the Lie algebra gl(n) and non-skew-symmetric “shifted and twisted” rational r-matrices. The obtained models include Gaudin-type models with and without an external magnetic field, n-level (n?1)-mode Jaynes–Cummings–Dicke-type models in the Λ-configuration, a vector generalization of Bose–Hubbard dimers, etc. We diagonalize quantum Hamiltonians of the constructed integrable models using a nested Bethe ansatz.  相似文献   

14.
We prove that each 2-local derivation from the algebra Mn(A ) (n > 2) into its bimodule Mn(M) is a derivation, where A is a unital Banach algebra and M is a unital A -bimodule such that each Jordan derivation from A into M is an inner derivation, and that each 2-local derivation on a C*-algebra with a faithful traceable representation is a derivation. We also characterize local and 2-local Lie derivations on some algebras such as von Neumann algebras, nest algebras, the Jiang–Su algebra, and UHF algebras.  相似文献   

15.
A class of circuits of functional elements over the standard basis of the conjunction, disjunction, and negation elements is considered. For each circuit Σ in this class, its depth D(Σ) and dimension R(Σ) equal to the minimum dimension of the Boolean cube allowing isomorphic embedding Σ are defined. It is established that for n = 1, 2,… and an arbitrary Boolean function f of n variables there exists a circuit Σf for implementing this function such that Rf) ? n ? log2 log2n + O(1) and Df) ? 2n ? 2 log2 log2n + O(1). It is proved that for n = 1, 2,… almost all functions of n variables allow implementation by circuits of the considered type, whose depth and dimension differ from the minimum values of these parameters (for all equivalent circuits) by no more than a constant and asymptotically no more than by a factor of 2, respectively.  相似文献   

16.
Let K be an ultrametric complete algebraically closed field, let D be a disk {x ∈ K ‖x| < R} (with R in the set of absolute values of K) and let A be the Banach algebra of bounded analytic functions in D. The vector space generated by the set of characters of A is dense in the topological dual of A if and only if K is not spherically complete. Let H(D) be the Banach algebra of analytic elements in D. The vector space generated by the set of characters of H(D) is never dense in the topological dual of H(D).  相似文献   

17.
A topological space is said to be paranormal if every countable discrete collection of closed sets {D n : n < ω} can be expanded to a locally finite collection of open sets {U n : n < ω}, i.e., D n ? U n and D m U n ≠ 0 if and only if D m = D n . It is proved that if F: Comp → Comp is a normal functor of degree ≥ 3 and the compact space F(X) is hereditarily paranormal, then the compact space X is metrizable.  相似文献   

18.
We clarify the relation between the subcategory D_(hf)~b(A) of homological finite objects in D~b(A)and the subcategory K~b(P) of perfect complexes in D~b(A), by giving two classes of abelian categories A with enough projective objects such that D_(hf)~b(A) = K~b(P), and finding an example such that D_(hf)~b(A)≠K~b(P). We realize the bounded derived category D~b(A) as a Verdier quotient of the relative derived category D_C~b(A), where C is an arbitrary resolving contravariantly finite subcategory of A. Using this relative derived categories, we get categorical resolutions of a class of bounded derived categories of module categories of infinite global dimension.We prove that if an Artin algebra A of infinite global dimension has a module T with inj.dimT ∞ such that ~⊥T is finite, then D~b(modA) admits a categorical resolution; and that for a CM(Cohen-Macaulay)-finite Gorenstein algebra, such a categorical resolution is weakly crepant.  相似文献   

19.
We prove the completeness of commutative subalgebras in S(gl(n)) constructed from the Sokolov–Odesskii Lie pencil with generic parameters.  相似文献   

20.
Let G = (V,A) be a digraph and k ≥ 1 an integer. For u, vV, we say that the vertex u distance k-dominate v if the distance from u to v at most k. A set D of vertices in G is a distance k-dominating set if each vertex of V D is distance k-dominated by some vertex of D. The distance k-domination number of G, denoted by γ k (G), is the minimum cardinality of a distance k-dominating set of G. Generalized de Bruijn digraphs G B (n, d) and generalized Kautz digraphs G K (n, d) are good candidates for interconnection networks. Denote Δ k := (∑ j=0 k d j )?1. F. Tian and J. Xu showed that ?nΔ k ? γ k (G B (n, d)) ≤?n/d k? and ?nΔ k ? ≤ γ k (G K (n, d)) ≤ ?n/d k ?. In this paper, we prove that every generalized de Bruijn digraph G B (n, d) has the distance k-domination number ?nΔ k ? or ?nΔ k ?+1, and the distance k-domination number of every generalized Kautz digraph G K (n, d) bounded above by ?n/(d k?1+d k )?. Additionally, we present various sufficient conditions for γ k (G B (n, d)) = ?nΔ k ? and γ k (G K (n, d)) = ?nΔ k ?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号