首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The paper outlines why the spectrum of maximal ideals Spec ? A of a countable-dimensional differential ?-algebra A of transcendence degree 1 without zero divisors is locally analytic, which means that for any ?-homomorphism ψ M: A → ? (MSpec ? A) and any aA the Taylor series \(\widetilde {{\psi _M}}{\left( a \right)^{\underline{\underline {def}} }}\sum\limits_{m = 0}^\infty {\psi M\left( {{a^{\left( m \right)}}} \right)} \frac{{{z^m}}}{{m!}}\) has nonzero radius of convergence depending on the element aA.  相似文献   

2.
We investigate the nonlinear Schrödinger equation iu t u+|u| p?1 u = 0with 1+ 4/N < p < 1+ 4/N?2 (when N = 1, 2, 1 + 4/N < p < ∞) in energy space H 1 and study the divergent property of infinite-variance and nonradial solutions. If \(M{\left( u \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( u \right) \prec M{\left( Q \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( Q \right)\) and \(\left\| {{u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}\left\| {\nabla {u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}{\left\| {\nabla Q} \right\|_2}\), then either u(t) blows up in finite forward time or u(t) exists globally for positive time and there exists a time sequence t n → +∞ such that \({\left\| {\nabla u\left( {{t_n}} \right)} \right\|_2} \to + \infty \). Here Q is the ground state solution of ?(1?s c )QQ+Q p?1 Q = 0. A similar result holds for negative time. This extend the result of the 3D cubic Schrödinger equation obtained by Holmer to the general mass-supercritical and energy-subcritical case.  相似文献   

3.
Let L2 be the space of 2π-periodic square-summable functions and E(f, X)2 be the best approximation of f by the space X in L2. For n ∈ ? and BL2, let \({{\Bbb S}_{B,n}}\) be the space of functions s of the form \(s\left( x \right) = \sum\limits_{j = 0}^{2n - 1} {{\beta _j}B\left( {x - \frac{{j\pi }}{n}} \right)} \). This paper describes all spaces \({{\Bbb S}_{B,n}}\) that satisfy the exact inequality \(E{\left( {f,{S_{B,n}}} \right)_2} \leqslant \frac{1}{{^{{n^r}}}}\parallel {f^{\left( r \right)}}{\parallel _2}\). (2n–1)-dimensional subspaces fulfilling the same estimate are specified. Well-known inequalities are for approximation by trigonometric polynomials and splines obtained as special cases.  相似文献   

4.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

5.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

6.
Suppose that m ≥ 2, numbers p1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ... + \frac{1}{{{p_m}}} < 1\), and functions γ1\({L^{{p_1}}}\)(?1), …, γ m \({L^{{p_m}}}\)(?1) are given. It is proved that if the set of “resonance points” of each of these functions is nonempty and the so-called “resonance condition” holds, then there are arbitrarily small (in norm) perturbations Δγk\({L^{{p_k}}}\)(?1) under which the resonance set of each function γk + Δγk coincides with that of γk for 1 ≤ km, but \({\left\| {\int\limits_0^t {\prod\limits_{k = 0}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]d\tau } } } \right\|_{{L^\infty }\left( {{\mathbb{R}^1}} \right)}} = \infty \). The notion of a resonance point and the resonance condition for functions in the spaces L p (?1), p ∈ (1, +∞], were introduced by the author in his previous papers.  相似文献   

7.
We study the well-posedness of the third-order degenerate differential equation \(\left( {{P_3}} \right):\alpha {\left( {Mu} \right)^{\prime \prime \prime }}\left( t \right) + {\left( {Mu} \right)^{\prime \prime }}\left( t \right) = \beta Au\left( t \right) + f\left( t \right)\), (t ∈ [0, 2p]) with periodic boundary conditions \(Mu\left( 0 \right) = Mu\left( {2\pi } \right),\;Mu'\left( 0 \right) = Mu'\left( {2\pi } \right),\;Mu''\left( 0 \right) = Mu''\left( {2\pi } \right)\), in periodic Lebesgue–Bochner spaces Lp(T,X), periodic Besov spaces Bp,qs(T,X) and periodic Triebel–Lizorkin spaces Fp,qs(T,X), where A, B and M are closed linear operators on a Banach space X satisfying D(A) \( \cap \)D(B) ? D(M) and α, β, γ ∈ R. Using known operator-valued Fourier multiplier theorems, we completely characterize the well-posedness of (P3) in the above three function spaces.  相似文献   

8.
Suppose that m ≥ 2, numbers p 1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + \cdots + \frac{1}{{{p_m}}} < 1\), and functions \({\gamma _1} \in {L^{{p_1}}}\left( {{?^1}} \right), \cdots ,{\gamma _m} \in {L^{{p_m}}}\left( {{?^1}} \right)\) are given. It is proved that if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both notions were defined by the author for functions in L p (?1), p ∈ (1, +∞]), then \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\mathop \smallint \limits_a^b \prod\limits_{k = 1}^m {[{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)]} d\tau } \right| \leqslant C\prod\limits_{k = 1}^m {{{\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|}_{L_{ak}^{pk}\left( {{R^1}} \right)}}} \) where the constant C > 0 is independent of the functions \(\Delta {\gamma _k} \in L_{ak}^{pk}\left( {{?^1}} \right)\) and \(L_{ak}^{pk}\left( {{?^1}} \right) \subset {L^{pk}}\left( {{?^1}} \right)\), 1 ≤ km, are special normed spaces. A condition for the integral over ?1 of a product of functions to be bounded is also given.  相似文献   

9.
We consider the following two problems. Problem 1: what conditions on a sequence of finite subsets A k ? ? and a sequence of functions λ k : A k → ? provide the existence of a number C such that any function fL 1 satisfies the inequality ‖U A(f)‖ p Cf1 and what is the exact constant in this inequality? Here, \(U_{\mathcal{A},\Lambda } \left( f \right)\left( x \right) = \sum\nolimits_{k = 1}^\infty {\left| {\sum\nolimits_{m \in A_k } {\lambda _k \left( m \right)c_m \left( f \right)e^{imx} } } \right|}\) and c m (f) are Fourier coefficients of the function fL 1. Problem 2: what conditions on a sequence of finite subsets A k ? ? guarantee that the function \(\sum\nolimits_{k = 1}^\infty {\left| {\sum\nolimits_{m \in A_k } {c_m \left( h \right)e^{imx} } } \right|}\) belongs to L p for every function h of bounded variation?  相似文献   

10.
In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space \(\dot B_{\infty ,\infty }^{ - r}\left( {{\mathbb{R}^2}} \right)\). The result shows that if θ is a weak solutions satisfies
$$\int_0^T {\frac{{\left\| {\nabla \theta ( \cdot ,s)} \right\|_{\dot B_{\infty ,\infty }^{ - r} }^{\tfrac{\alpha }{{\alpha - r}}} }}{{1 + \ln \left( {e + \left\| {\nabla ^ \bot \theta ( \cdot ,s)} \right\|_{L^{\tfrac{2}{r}} } } \right)!}}ds < \infty for some 0 < r < \alpha and 0 < \alpha < 1,}$$
then θ is regular at t = T. In view of the embedding \({L^{\frac{2}{r}}} \subset M_{\frac{2}{r}}^p \subset \dot B_{\infty ,\infty }^{ - r}\) with \(2 \leqslant p < \frac{2}{r}\) and 0 ≤ r < 1, we see that our result extends the results due to [20] and [31].
  相似文献   

11.
Let m ≥ 2, the numbers p 1,…, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ...\frac{1}{{{p_m}}} < 1\), and γ1 ∈ L p1(?1), …, γ m \({L^{{p_m}}}\)(?1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces L p (?1), p ∈ (1, +∞]), we have the inequality \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\int\limits_a^b {\prod\limits_{k = 1}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]} d\tau } } \right| \leqslant C{\prod\limits_{k = 1}^m {\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|} _{L_{{a_k}}^{{p_k}}}}\left( {{\mathbb{R}^1}} \right)\), where the constant C > 0 is independent of functions \(\Delta {\gamma _k} \in L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right)\) and \(L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right) \subset {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\), 1 ≤ km are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ?1.  相似文献   

12.
For any x ?? (0, 1], let the series \( {\sum}_{n=1}^{\infty }1/{d}_n(x) \) be the Sylvester expansion of x, where {d j (x),?j?≥?1} is a sequence of positive integers satisfying d1(x)?≥?2 and dj?+?1(x)?≥?d j (x)(d j (x)???1)?+?1 for j?≥?1. Suppose ? : ? → ?+ is a function satisfying ?(n+1) – ? (n) → ∞ as n → ∞. In this paper, we consider the set
$$ E\left(\phi \right)=\left\{x\kern0.5em \in \left(0,1\right]:\kern0.5em \underset{n\to \infty }{\lim}\frac{\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)}{\phi (n)}=1\right\} $$
and quantify the size of the set in the sense of Hausdorff dimension. As applications, for any β > 1 and γ > 0, we get the Hausdorff dimension of the set \( \left\{x\in \kern1em \left(0,1\right]:\kern0.5em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{n}^{\beta }=\upgamma \right\}, \) and for any τ > 1 and η > 0, we get a lower bound of the Hausdorff dimension of the set \( \left\{x\kern0.5em \in \kern0.5em \left(0,1\right]:\kern1em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{\tau}^n=\eta \right\}. \)  相似文献   

13.
Let X be a Banach space with a weak uniform normal structure and C a non–empty convexweakly compact subset of X. Under some suitable restriction, we prove that every asymptoticallyregular semigroup T = {T(t) : t ∈¸ S} of selfmappings on C satisfying
${\mathop {\lim \inf }\limits_{S \mathrel\backepsilon t \to \infty } }{\left| {{\left\| {T(t)} \right\|}} \right|} < {\text{WCS}}(X)$
has a common fixed point, where WCS(X) is the weakly convergent sequence coefficient of X, and\({\left| {{\left\| {T(t)} \right\|}} \right|}\) is the exact Lipschitz constant of T(t).  相似文献   

14.
Following an idea of Lin, we prove that if A and B are two positive operators such that 0 mI ≤ A ≤m'I≤ M'I ≤ B ≤ MI, then Φ~2(A+B/2)≤K~2(h)/(1+(logM'/m'/g))~2Φ~2(A≠B) and Φ~2(A+B/2)≤K~2(h)/(1+(logM'/m'/g))~2(Φ(A)≠Φ(B))~2 where K(h)=(h+1)~2/4 and h = M/m and Φ is a positive unital linear map.  相似文献   

15.
In the paper we prove a theorem of Piccard’s type which generalizes [9, Theorem 2]. More precisely, we show that in an abelian Polish group X the set \(\left\{ {\left( {{x_{1, \ldots ,\;}}{x_N}} \right) \in \;{X^N}\;:\;A\; \cap \;\bigcap\limits_{i = 1}^N {\left( {A + {x_i}} \right)} \;is\;not\;Haar\;meager\;in\;X} \right\}\) is a neighbourhood of 0 for every N ∈ N and every Borel non-Haar meager set A ? X. The paper refers to the paper [3].  相似文献   

16.
In this paper, we consider the two-dimensional Hausdorff operators on the power weighted Hardy space H_(|x|α)~1(R~2) ( -1 ≤α≤0), defined by H_(Φ,A)f(x)=∫R~2Φ(u)f(A(u)x)du,where Φ∈L_loc~1(R~2),A(u) = (α_(ij)(u))_(i,j=1)~2 is a 2×2 matrix, and each α_(i,j) is a measurablefunction.We obtain that HΦ,A is bounded from H_(|x|~α)~1(R~2) ( -1≤α≤0) to itself, if∫R2|Φ(u)‖det A~(-1)(u)|‖A(u)‖~(-α)ln(1+‖A~(-1)(u)‖~2/|det A~(-1)(u)|)du∞.This result improves some known theorems, and in some sense it is sharp.  相似文献   

17.
We consider the Schrödinger operator
$$ \text{-} \frac{d^{2}}{d x^{2}} + V {\text{on an interval}}~~[a,b]~{\text{with Dirichlet boundary conditions}},$$
where V is bounded from below and prove a lower bound on the first eigenvalue λ 1 in terms of sublevel estimates: if w V (y) = |{x ∈ [a, b] : V (x) ≤ y}|, then
$$\lambda_{1} \geq \frac{1}{250} \min\limits_{y > \min V}{\left( \frac{1}{w_{V}(y)^{2}} + y\right)}.$$
The result is sharp up to a universal constant if {x ∈ [a, b] : V(x) ≤ y} is an interval for the value of y solving the minimization problem. An immediate application is as follows: let \({\Omega } \subset \mathbb {R}^{2}\) be a convex domain and let \(u:{\Omega } \rightarrow \mathbb {R}\) be the first eigenfunction of the Laplacian ? Δ on Ω with Dirichlet boundary conditions on ?Ω. We prove
$$\| u \|_{L^{\infty}({\Omega})} \lesssim \frac{1}{\text{inrad}({\Omega})} \left( \frac{\text{inrad}({\Omega})}{\text{diam}({\Omega})} \right)^{1/6} \|u\|_{L^{2}({\Omega})},$$
which answers a question of van den Berg in the special case of two dimensions.
  相似文献   

18.
Let ?: E(G) → {1, 2, · · ·, k} be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if \(\sum\limits_{e \mathrel\backepsilon u} {\phi \left( e \right)} \ne \sum\limits_{e \mathrel\backepsilon v} {\phi \left( e \right)} \) for each edge uvE(G). The smallest value k for which G has such a coloring is denoted by χΣ(G), which makes sense for graphs containing no isolated edge (we call such graphs normal). It was conjectured by Flandrin et al. that χΣ(G) ≤ Δ(G) + 2 for all normal graphs, except for C5. Let mad(G) = \(\max \left\{ {\frac{{2\left| {E\left( h \right)} \right|}}{{\left| {V\left( H \right)} \right|}}|H \subseteq G} \right\}\) be the maximum average degree of G. In this paper, we prove that if G is a normal graph with Δ(G) ≥ 5 and mad(G) < 3 ? \(\frac{2}{{\Delta \left( G \right)}}\), then χΣ(G) ≤ Δ(G) + 1. This improves the previous results and the bound Δ(G) + 1 is sharp.  相似文献   

19.
The paper proves that for any ε > 0 there exists ameasurable set E ? [0, 1] with measure |E| > 1 ? ε such that for each f ∈ L1[0, 1] there is a function \(\tilde f \in {L^1}\left[ {0,1} \right]\) coinciding with f on E whose Fourier-Walsh series converges to \(\tilde f\) in L1[0, 1]-norm, and the sequence \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \) is monotonically decreasing, where \(\left\{ {{c_k}\left( {\tilde f} \right)} \right\}\) is the sequence of Fourier-Walsh coefficients of \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \).  相似文献   

20.
In terms of differential generators and differential relations for a finitely generated commutative- associative differential C-algebra A (with a unit element) we study and determine necessary and sufficient conditions for the fact that under any Taylor homomorphism \(\widetilde \psi \)M: A → C[[z]] the transcendence degree of the image \(\widetilde \psi \)M(A) over C does not exceed 1 \(\left( {\widetilde \psi M{{\left( a \right)}^{\underline{\underline {def}} }}\sum\limits_{m = 0}^\infty {\psi M\left( {{a^{\left( m \right)}}} \right)} } \right)\frac{{{z^m}}}{{m!}}\), where aA, M ∈ SpecCA is a maximal ideal in A, a(m) is the result of m-fold application of the signature derivation of the element a, and ψM is the canonic epimorphism AA/M).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号