首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \({\mathbb{N}}\) denote the set of all nonnegative integers. Let \({k \ge 3}\) be an integer and \({A_{0} = \{a_{1}, \dots, a_{t}\} (a_{1} < \cdots < a_{t})}\) be a nonnegative set which does not contain an arithmetic progression of length k. We denote \({A = \{a_{1}, a_{2}, \ldots{}\}}\) defined by the following greedy algorithm: if \({l \ge t}\) and \({a_{1}, \dots{}, a_{l}}\) have already been defined, then \({a_{l+1}}\) is the smallest integer \({a > a_{l}}\) such that \({\{a_{1}, \dots, a_{l}\} \cup \{a\}}\) also does not contain a k-term arithmetic progression. This sequence A is called the Stanley sequence of order k generated by A0. We prove some results about various generalizations of the Stanley sequence.  相似文献   

2.
In this paper, the authors prove a general Schwarz lemma at the boundary for the holomorphic mapping f between unit balls B and B′in separable complex Hilbert spaces H and H′, respectively. It is found that if the mapping f ∈ C~(1+α)at z_0∈ ?B with f(z_0) = w_0∈ ?B′, then the Fr′echet derivative operator Df(z_0) maps the tangent space Tz_0(?B~n) to Tw_0(?B′), the holomorphic tangent space T_(z_0)~(1,0)(?B~n) to T_(w_0)~(1,0)(?B′),respectively.  相似文献   

3.
Let \({\Omega}\) be a Lipschitz bounded domain of \({\mathbb{R}^N}\), \({N\geq2}\), and let \({u_p\in W_0^{1,p}(\Omega)}\) denote the p-torsion function of \({\Omega}\), p > 1. It is observed that the value 1 for the Cheeger constant \({h(\Omega)}\) is threshold with respect to the asymptotic behavior of up, as \({p\rightarrow 1^+}\), in the following sense: when \({h(\Omega) > 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_{p}\right\| _{L^\infty(\Omega)}=0}\), and when \({h(\Omega) < 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega)}=\infty}\). In the case \({h(\Omega)=1}\), it is proved that \({\limsup_{p\rightarrow1^+}\left\|u_p\right\|_{L^\infty(\Omega)}<\infty}\). For a radial annulus \({\Omega_{a,b}}\), with inner radius a and outer radius b, it is proved that \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega_{a,b})}=0}\) when \({h(\Omega_{a,b})=1}\).  相似文献   

4.
A theorem due to Stieltjes’ states that if \({\{p_n\}_{n=0}^\infty}\) is any orthogonal sequence then, between any two consecutive zeros of p k , there is at least one zero of p n whenever k < n, a property called Stieltjes interlacing. We show that Stieltjes interlacing extends to the zeros of Gegenbauer polynomials \({C_{n+1}^{\lambda}}\) and \({C_{n-1}^{\lambda+t}}\), \({\lambda > -\frac 12}\), if 0 < tk + 1, and also to the zeros of \({C_{n+1}^{\lambda}}\) and \({C_{n-2}^{\lambda +k}}\) if \({k\in\{1,2,3\}}\). More generally, we prove that Stieltjes interlacing holds between the zeros of the kth derivative of \({C_{n}^{\lambda}}\) and the zeros of \({C_{n+1}^{\lambda}}\), \({k\in\{1,2,\dots,n-1\}}\) and we derive associated polynomials that play an analogous role to the de Boor–Saff polynomials in completing the interlacing process of the zeros.  相似文献   

5.
Consider the polynomial \({f(x, y) = xy^k + C}\) for \({k \geq 2}\) and any nonzero integer constant C. We derive an asymptotic formula for the k-free values of \({f(x, y)}\) when \({x, y \leq H}\). We also prove a similar result for the k-free values of \({f(p, q)}\) when \({p, q \leq H}\) are primes, thus extending Erd?s’ conjecture for our specific polynomial. The strongest tool we use is a recent generalization of the determinant method due to Reuss.  相似文献   

6.
Set \({T=N^{\frac{1}{3}-\epsilon}}\). It is proved that for all but \({\ll TL^{-H},\,H > 0}\), exceptional prime numbers \({k\leq T}\) and almost all integers b 1, b 2 co-prime to k, almost all integers \({n\sim N}\) satisfying \({n\equiv b_{1}+b_{2}(mod\,k)}\) can be written as the sum of two primes p 1 and p 2 satisfying \({p_{i}\equiv b_{i}(mod\,k),\,i=1,2}\). For prime numbers \({k\leq N^{\frac{5}{24}-\epsilon}}\), this result is even true for all but \({\ll (\log\,N)^{D}}\) primes k and all integers b 1, b 2 co-prime to k.  相似文献   

7.
If every k-membered subfamily of a family of plane convex bodies has a line transversal, then we say that this family has property T(k). We say that a family \({\mathcal{F}}\) has property \({T-m}\), if there exists a subfamily \({\mathcal{G} \subset \mathcal{F}}\) with \({|\mathcal{F} - \mathcal{G}| \le m}\) admitting a line transversal. Heppes [7] posed the problem whether there exists a convex body K in the plane such that if \({\mathcal{F}}\) is a finite T(3)-family of disjoint translates of K, then m = 3 is the smallest value for which \({\mathcal{F}}\) has property \({T-m}\). In this paper, we study this open problem in terms of finite T(3)-families of pairwise disjoint translates of a regular 2n-gon \({(n \ge 5)}\). We find out that, for \({5 \le n \le 34}\), the family has property \({T - 3}\) ; for \({n \ge 35}\), the family has property \({T - 2}\).  相似文献   

8.
Suppose that m ≥ 2, numbers p1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ... + \frac{1}{{{p_m}}} < 1\), and functions γ1\({L^{{p_1}}}\)(?1), …, γ m \({L^{{p_m}}}\)(?1) are given. It is proved that if the set of “resonance points” of each of these functions is nonempty and the so-called “resonance condition” holds, then there are arbitrarily small (in norm) perturbations Δγk\({L^{{p_k}}}\)(?1) under which the resonance set of each function γk + Δγk coincides with that of γk for 1 ≤ km, but \({\left\| {\int\limits_0^t {\prod\limits_{k = 0}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]d\tau } } } \right\|_{{L^\infty }\left( {{\mathbb{R}^1}} \right)}} = \infty \). The notion of a resonance point and the resonance condition for functions in the spaces L p (?1), p ∈ (1, +∞], were introduced by the author in his previous papers.  相似文献   

9.
For any prime p and positive integers c, d there is up to isomorphism a unique p-group \({G_{d}^{c}(p)}\) of least order having any (finite) p-group G with rank \({d(G) \le d}\) and Frattini class \({c_{p}(G) \le c}\) as epimorphic image. Here \({c_{p}(G) = n}\) is the least positive integer such that G has a central series of length n with all factors being elementary. This “disposition” p-group \({G_{d}^{c}(p)}\) has been examined quite intensively in the literature, sometimes controversially. The objective of this paper is to present a summary of the known facts, and to add some new results. For instance we show that for \({G = G_{d}^{c}(p)}\) the centralizer \({C_{G}(x) = \langle Z(G), x \rangle}\) whenever \({x \in G}\) is outside the Frattini subgroup, and that for odd p and \({d \ge 2}\) the group \({E = G_{d}^{c+1}(p)/(G_{d}^{c+1}(p))^{p^{c}}}\) is a distinguished Schur cover of G with \({E/Z(E) \cong G}\). We also have a fibre product construction of \({G_{d}^{c+1}(p)}\) in terms of \({G = G_{d}^{c}(p)}\) which might be of interest for Galois theory.  相似文献   

10.
Let \({\mathcal{M}}\) be a semifinite von Neumann algebra with a faithful, normal, semifinite trace \({\tau}\) and E be a strongly symmetric Banach function space on \({[0,\tau({\bf 1}))}\) . We show that an operator x in the unit sphere of \({E(\mathcal{M}, \tau)}\) is k-extreme, \({k \in {\mathbb{N}}}\) , whenever its singular value function \({\mu(x)}\) is k-extreme and one of the following conditions hold (i) \({\mu(\infty, x) = \lim_{t\to\infty}\mu(t, x) = 0}\) or (ii) \({n(x)\mathcal{M}n(x^*) = 0}\) and \({|x| \geq \mu(\infty, x)s(x)}\) , where n(x) and s(x) are null and support projections of x, respectively. The converse is true whenever \({\mathcal{M}}\) is non-atomic. The global k-rotundity property follows, that is if \({\mathcal{M}}\) is non-atomic then E is k-rotund if and only if \(E(\mathcal{M}, \tau)\) is k-rotund. As a consequence of the noncommutative results we obtain that f is a k-extreme point of the unit ball of the strongly symmetric function space E if and only if its decreasing rearrangement \({\mu(f)}\) is k-extreme and \({|f| \geq \mu(\infty,f)}\) . We conclude with the corollary on orbits Ω(g) and Ω′(g). We get that f is a k-extreme point of the orbit \({\Omega(g),\,g \in L_1 + L_{\infty}}\) , or \({\Omega'(g),\,g \in L_1[0, \alpha),\,\alpha < \infty}\) , if and only if \({\mu(f) = \mu(g)}\) and \({|f| \geq \mu(\infty, f)}\) . From this we obtain a characterization of k-extreme points in Marcinkiewicz spaces.  相似文献   

11.
Let F be a non-Archimedean local field of characteristic 0, let G be the group of F-rational points of a connected reductive group defined over F and let \({G\prime}\) be the group of F-rational points of its quasi-split inner form. Given standard modules \({I(\tau, \nu )}\) and \({I(\tau\prime, \nu\prime)}\) for G and \({G\prime}\) respectively with \({\tau\prime}\) a generic tempered representation, such that the Harish-Chandra \({\mu}\)-function of a representation in the supercuspidal support of \({\tau}\) agrees with the one of a generic essentially square-integral representation in some Jacquet module of \({\tau\prime}\) (after a suitable identification of the underlying spaces under which \({\nu = \nu\prime}\)), we show that \({I(\tau, \nu)}\) is irreducible whenever \({I(\tau\prime, \nu\prime)}\) is. The conditions are satisfied if the Langlands quotients \({J(\tau, \nu})\) and \({J(\tau\prime, \nu\prime)}\) of respectively \({I(\tau, \nu)}\) and \({I(\tau\prime, \nu\prime)}\) lie in the same Vogan L-packet (whenever this Vogan L-packet is defined), proving that, for any Vogan L-packet, all the standard modules with Langlands quotient in a given Vogan L-packet are irreducible, if and only if this Vogan L-packet contains a generic representation. This result for generic Vogan L-packets was proven for quasi-split orthogonal and symplectic groups by Moeglin-Waldspurger and used in their proof of the general case of the local Gan-Gross-Prasad conjectures for these groups.  相似文献   

12.
The main purpose of this paper is to establish the Hormander-Mihlin type theorem for Fourier multipliers with optimal smoothness on k-parameter Hardy spaces for k≥ 3 using the multiparameter Littlewood-Paley theory. For the sake of convenience and simplicity, we only consider the case k = 3, and the method works for all the cases k≥ 3:■where x =(x_1,x_2,x_3)∈R~(n_1)×R~(n_2)×R~(n_3) and ξ =(ξ_1,ξ_2,ξ_3)∈R~(n_1)×R~(n_2)×R~(n_3). One of our main results is the following:Assume that m(ξ) is a function on R~(n_1+n_2+n_3) satisfying ■ with s_i n_i(1/p-1/2) for 1≤i≤3. Then T_m is bounded from H~p(R~(n_1)×R~(n_2)×R~(n_3) to H~p(R~(n_1)×R~(n_2)×R~(n_3)for all 0 p≤1 and ■ Moreover, the smoothness assumption on s_i for 1≤i≤3 is optimal. Here we have used the notations m_(j,k,l)(ξ)=m(2~jξ_1,2~kξ_2,2~lξ_3)Ψ(ξ_1)Ψ(ξ_2)Ψ(ξ_3) and Ψ(ξ_i) is a suitable cut-off function on R~(n_i) for1≤i≤3, and W~(s_1,s_2,s_3) is a three-parameter Sobolev space on R~(n_1)×R~(n_2)× R~(n_3).Because the Fefferman criterion breaks down in three parameters or more, we consider the L~p boundedness of the Littlewood-Paley square function of T_mf to establish its boundedness on the multi-parameter Hardy spaces.  相似文献   

13.
We introduce and study adhesive spaces. Using this concept we obtain a characterization of stable Baire maps \({f : X\to Y}\) of the class \({\alpha}\) for wide classes of topological spaces. In particular, we prove that for a topological space X and a contractible space Y a map \({f : X \to Y}\) belongs to the nth stable Baire class if and only if there exist a sequence \({(f_k)_{k=1}^\infty}\) of continuous maps \({f_k : {X \to Y}}\) and a sequence \({(F_k)_{k=1}^\infty}\) of functionally ambiguous sets of the nth class in X such that \({f|_{F_k}=f_k|_{F_k}}\) for every k. Moreover, we show that every monotone function \({f : \mathbb{R} \to \mathbb{R}}\) is of the \({\alpha}\) th stable Baire class if and only if it belongs to the first stable Baire class.  相似文献   

14.
15.
Let f be a fixed holomorphic Hecke eigen cusp form of weight k for \( SL\left( {2,{\mathbb Z}} \right) \), and let \( {\mathcal U} = \left\{ {{u_j}:j \geqslant 1} \right\} \) be an orthonormal basis of Hecke–Maass cusp forms for \( SL\left( {2,{\mathbb Z}} \right) \). We prove an asymptotic formula for the twisted first moment of the Rankin–Selberg L-functions \( L\left( {s,f \otimes {u_j}} \right) \) at \( s = \frac{1}{2} \) as u j runs over \( {\mathcal U} \). It follows that f is uniquely determined by the central values of the family of Rankin–Selberg L-functions \( \left\{ {L\left( {s,f \otimes {u_j}} \right):{u_j} \in {\mathcal U}} \right\} \).  相似文献   

16.
We study local analytic solutions of the functional-differential equation of the form \({h(\psi(z)) = b(z) h(z) h^\prime(z) + d(z)h(z)^{2}}\) which are called Beardon type functional-differential equations. All functions involved are supposed to be holomorphic in a neighbourhood of zero. Special cases are the equations f(kz) =  kf(z) f′(z) where k is a complex number, \({k \neq 0}\), and \({f(\varphi(z)) = a(z) f(z) f'(z)}\) with given \({\varphi}\) and a. The class of these equations is invariant under transformations \({h \to \alpha h, \alpha(z) \neq 0}\) for all z in a neighbourhood of zero, of the unknown function and \({z \to T(z)}\) of the argument z. In particular, we are interested to know under which conditions a Beardon type functional-differential equation can be transformed to the simplified (normal form) \({h(kz) = k h(z) h'(z) + c(z) h(z)^2}\) where \({k \in \mathbb {C} \backslash\left\{0\right\}}\). We solve this normal form by another transfomation to a so-called Briot–Bouquet type functional-differential equation.  相似文献   

17.
We fix an integer \({n \geq 1}\) and a divisor m of n such that n/m is odd. Let p be a prime number of the form \({p=2n\ell+1}\) for some odd prime number \({\ell}\) with \({\ell \nmid m}\). Let \({S=pB_{1,2m\ell}}\) be the p times of the generalised Bernoulli number associated to an odd Dirichlet character of conductor p and order \({2m\ell}\), which is an algebraic integer of the \({2m\ell}\)th cyclotomic field. It is known that \({S \neq 0}\). More strongly, we show that when \({\ell}\) is sufficiently large, the trace of \({\zeta^{-1}S}\) to the \({2m}\)th cyclotomic field does not vanish for any\({\ell}\)th root \({\zeta}\) of unity. We also show a related result on indivisibility of relative class numbers.  相似文献   

18.
For completely contractive Banach algebras A and B (respectively operator algebras A and B), the necessary and sufficient conditions for the operator space projective tensor product \({A\widehat{\otimes}B}\) (respectively the Haagerup tensor product \({A\otimes^{h}B}\)) to be Arens regular are obtained. Using the non-commutative Grothendieck inequality, we show that, for C*-algebras A and B, \({A\otimes^{\gamma} B}\) is Arens regular if \({A\widehat{\otimes}B}\) and \({A\widehat{\otimes}B^{op}}\) are Arens regular whereas \({A\widehat{\otimes}B}\) is Arens regular if and only if \({A\otimes^{h}B}\) and \({B\otimes^{h}A}\) are, where \({\otimes^h}\), \({\otimes^{\gamma}}\), and \({\widehat{\otimes}}\) are the Haagerup, the Banach space projective tensor norm, and the operator space projective tensor norm, respectively.  相似文献   

19.
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product \({\phi}\) on the Dirichlet space D. We prove that any two distinct nontrivial minimal reducing subspaces of \({M_\phi}\) are orthogonal. When the order n of \({\phi}\) is 2 or 3, we show that \({M_\phi}\) is reducible on D if and only if \({\phi}\) is equivalent to \({z^n}\). When the order of \({\phi}\) is 4, we determine the reducing subspaces for \({M_\phi}\), and we see that in this case \({M_\phi}\) can be reducible on D when \({\phi}\) is not equivalent to \({z^4}\). The same phenomenon happens when the order n of \({\phi}\) is not a prime number. Furthermore, we show that \({M_\phi}\) is unitarily equivalent to \({M_{z^n} (n > 1)}\) on D if and only if \({\phi = az^n}\) for some unimodular constant a.  相似文献   

20.
Let \({\mathcal{B}^\omega(p, q, B_d)}\) denote the \({\omega}\)-weighted Hardy–Bloch space on the unit ball B d of \({\mathbb{C}^d}\), \({d\ge 1}\). For \({2< p,q < \infty}\) and \({f\in \mathcal{B}^\omega(p, q, B_d)}\), we obtain sharp estimates on the growth of the p-integral means M p (f, r) as \({r\to 1-}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号