首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Even for a 100 nm interparticle distance or a small change in particle shape,optical Fano-like plasmonic resonance mode usually vanishes completely.It would be remarkable if stable Fano-like resonance could somehow be achieved in distinctly shaped nanoparticles for more than 1μm interparticle distance,which corresponds to the far electromagnetic field region.If such far-field Fano-like plasmonic resonance can be achieved,controlling the reversal of the far-field binding force can be attained,like the currently reported reversals for near-field cases.In this work,we have proposed an optical set-up to achieve such a robust and stable Fano-like plasmonic resonance,and comparatively studied its remarkable impact on controlling the reversal of near-and far-field optical binding forces.In our proposed set-up,the distinctly shaped plasmonic tetramers are half immersed(i.e.air-benzene)in an inhomogeneous dielectric interface and illuminated by?circular?polarized light.We have demonstrated significant differences between near-and far-field optical binding forces along with the Lorentz force field,which partially depends on the object’s shape.A clear connection is shown between the far-field binding force and the resonant modes,along with a generic mechanism to achieve controllable Fano-like plasmonic resonance and the reversal of the optical binding force in both far-and near-field configurations.  相似文献   

2.
《中国物理 B》2021,30(6):64205-064205
We investigate optical force on a graphene-coated gain microparticle by adopting the Maxwell's stress tensor method.It is found that there exists a threshold gain in obtaining the Fano-profile optical force which indicates the reversal of optical pushing and pulling force. And giant pushing/pulling force can be achieved if the gain value of the material is in the proximity of the threshold gain. Our results show that the threshold gain is more sensitive to the relaxation time than to the Fermi energy of the graphene. We further study the optical force on larger microparticle to demonstrate the pulling force occurring at octupole resonance with small gain value and then it will appear at quadrupole resonance by increasing gain value. Our work provides an in-depth insight into the interaction between light and gain material and gives the additional degree of freedom to optical manipulation of microparticle.  相似文献   

3.
We present near-field distributions around an isolated 800-nm silica or silicon nanoparticle, and nanoparticle arrays of 800-nm silica or silicon nanoparticles, on a silicon substrate by the finite-difference time-domain method when 800-nm light is irradiated obliquely to the substrate. Nanopatterning mediated with the nanoparticle system is promising for large-area, high-throughput patterning by using an enhanced localized near-field ablation by the nanoscattered light lens effect. The irradiation area cannot be extended for silica nanoparticles, because the optical field enhancement factor is low. Gold nanoparticles can generate highly enhanced near fields, although at present there are no useful ways to arrange the gold nanoparticles on the substrate at a high throughput. Silicon nanoparticles with high dielectric permittivity have optical characteristics of both silica and gold nanoparticles. The particle arrangement on the Si substrate is technically easy using a wet pulling process. From the calculation, high optical field intensity is acquired with oblique s-polarized irradiation to the substrate under silicon nanoparticle arrays, and the intensity is almost the same as that under gold nanoparticle arrays under the same condition. With this method, high-throughput nanopatterning for a large area would be achievable.  相似文献   

4.
A cascade transfer of light energy to a resonance atom situated near a spherical nanoparticle and then, by a nonradiative mechanism, to the nanoparticle itself is considered. It is established that the efficiency of the cascade transfer essentially depends on the frequency and polarization of light, on the distance between the atom and the particle, on the optical properties of the particle, and on the time conditions of radiation. The rate of light absorption by a metal nanoparticle via cascade energy transfer may be 104–105 times higher than the direct absorption of light by a nanoparticle. For a fixed frequency of light, the cascade transfer of energy is a sharply selective function of the distance between the atom and the particle (the resonance width is about 10?2 of the particle radius). Atomic fluorescence exhibits similar behavior. This feature can form the basis for a new method of optical scanning microscopy and location and localization of atoms near the surface of a particle.  相似文献   

5.
The study of bimetallic clusters has been increasing in recent years due to the wide range of novel applications, when compared with monometallic nanoparticles This paper presents a simple method of low toxicity to obtain bimetallic nanoparticle clusters of AuCu. The localized surface plasmon resonance (LSPR) of the nanoalloy was located in a value in between those reported for AuNP and CuNP. Raman bands of nanoparticle clusters of AuCu were observed in the range 130-300 cm?1. The structural and optical analysis of the synthesized nanoparticles confirmed the presence of the bond Au-Cu, with a particle size ranging from 1 to 2 nm. The geometries and vibrational modes were predicted for small metallic clusters of Au, Cu and bimetallic AuCu. The AgCu nanoparticles have been recently implemented in glasses to study optical properties, as well as antibacterial applications.  相似文献   

6.
The strong field localization generated between closely placed metal particles excited by electromagnetic radiation induces intense forces on small polarizable objects. In this study we investigate the optical forces that can be generated in the vicinity of metal nanoparticle clusters using fully electrodynamic numerical simulations. The influence of the cluster configuration as well as of the excitation parameters is analyzed.  相似文献   

7.
We use extended Mie theory to investigate optical forces induced by and acting on small silver nanoparticle aggregates excited at surface plasmon resonance. It is shown that single molecules can be trapped at junctions between closely spaced nanoparticles, which are simultaneously pulled together by optical forces. These effects could significantly influence surface-enhanced Raman scattering and related spectroscopies under normal experimental conditions and contribute to single-molecule sensitivity.  相似文献   

8.
A three dimensional isotropic metamaterial is proposed and theoretically studied, which is composed of excitonic spherical nanoparticles in a dielectric host and exhibits electromagnetic transparency and slow light effects in optical regime. The approach is different from the conventional methods of realizing classical Electromagnetically Induced Transparency (EIT) or plasmon induced transparency effects, which are usually based on the interaction of dark and bright states of the medium plasmonic constituents. Instead, it is based on the Fano-like coupling of Mie resonances in the spherical inclusions, resulting from sharp and strong excitonic resonance of the particles. Using the Extended Maxwell Garnett effective medium approximation for calculating the effective electromagnetic parameters of the proposed metamaterial structure, it is shown that EIT-like effects can be produced, such as steep normal dispersion profiles within narrow transparency windows, resulting in high values of group index of refraction on the order of several thousands and figure of merit values around 10, near the excitonic resonance of the nanoparticle inclusions in UV region.  相似文献   

9.
We report a facile method for controllable fabrication of high-density silver nanoparticle films with a widely adjustable surface plasmon resonance (SPR) frequency, based on the gas phase cluster beam deposition. On the one hand, we can control the particle size by depositing clusters on silica substrate. Light extinction spectra of the self-assembled Ag nanoparticles with various particle sizes are characterized and show two SPRs, in which a SPR exhibits a redshift from less 400 nm to more than 570 nm with an increase in the particle size, whereas the other shows a slight position shifting. On the other hand, the inter-particle distance of the self-assembled Ag nanoparticles can also be controlled by depositing clusters on silica glass coated with Formvar film, and the SPR wavelength shows a redshift from <400 nm to more than 560 nm, which can be attributed to the increase of the fraction of closely spaced nanoparticle pairs that are near-field coupled with the deposition mass. The size and coverage-dependent SPR properties are also compared with the results from the discrete dipole approximation calculations. The present method of tailoring metallic microstructures could find important applications in plasmonics.  相似文献   

10.
Usually a light beam pushes a particle when the photons act upon it. We investigate the optical forces by nonparaxial gradientless beams and find that the forces can drag suitable particles all the way towards the light source. The major criterion of realizing the backward dragging force is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved.  相似文献   

11.
We investigate numerically the optical forces exerted by an incident light beam on metal nanoparticles (MNP) sustaining the so-called localized surface plasmons (LSP). We first describe how the particle dispersion can be used to tune the respective contribution from extinction and gradient forces. By a suitable adjustment of the illumination conditions, single MNP can be selectively guided, sorted and trapped. The second part of our work investigates the interparticle forces existing within a MNP ensemble. Our results show that MNP located in a conventional optical trap can self-arrange under optical forces according to specific architectures. In particular, at very low distances, they tend to agglomerate into metal clusters leading to very high field concentration in the interstices. PACS 71.45.Gm; 71.36.+c; 87.80.Cc  相似文献   

12.
Clustering strongly affects the transverse (T2) relaxation induced by superparamagnetic nanoparticles in magnetic resonance experiments. In this study, we used Monte Carlo simulations to investigate systematically the relationship between T2 values and the geometric parameters of nanoparticle clusters. We computed relaxation as a function of particle size, number of particles per cluster, interparticle distance, and cluster shape (compact vs. linear). We found that compact clusters induced relaxation equivalent to similarly sized single particles. For small particles, the shape and density of clusters had a significant effect on T2. In contrast, for larger particles, T2 relaxation was relatively independent of cluster geometry until interparticle distances within a cluster exceeded ten times the particle diameter. Results from our simulations suggest principles for the design of nanoparticle aggregation-based sensors for MRI.  相似文献   

13.
金属纳米颗粒阵列中形成的四偶极晶格共振模式具有低辐射损耗、高品质因子的特性,因此广泛应用于纳米激光、传感、固态照明等领域.基于时域有限差分法在均匀环境下研究了银纳米圆柱阵列的光谱与近场特性.研究结果表明,在x偏振光直入射下,通过调节阵列x方向的周期,共振强度先增加后降低,当两个方向上的周期相等时,提出的阵列结构能够产生一个线宽约0.4 nm、品质因子高达1815的四偶极晶格共振模式,这种共振模式呈现出Fano线型的透射谷;调控y方向的周期能够实现从Fano线型的透射峰到透射谷的转变.本文说明了粒子大小、晶格周期对四偶极晶格共振模式的重要性,同时为银纳米颗粒在可见光波段设计高品质因子共振提供了优化策略.  相似文献   

14.
Novitsky DV 《Optics letters》2011,36(11):2002-2004
Fano mechanism is the universal explanation of asymmetric resonance appearing in different systems. We report the evidence of Fano-like resonance in selective reflection from a resonant two-level medium. We draw an analogy with the asymmetric resonance previously obtained for the coupled oscillators. We also take into account the effects of dielectric background and local-field correction and connect our results with optical bistability.  相似文献   

15.
Wang DS  Lin CW 《Optics letters》2007,32(15):2128-2130
We experimentally and theoretically study the density-dependent optical properties of 20 nm gold nanoparticle monolayers on silicon at 530 nm. Both results indicate a density-dependent resonance behavior. The density-dependent resonance suggests that the optical properties of the gold nanoparticle monolayers can be drastically modulated by changing the volume ratio V(r). It also implies, in this composite system, that the total surface plasmon resonance is maximized at a certain V(r).  相似文献   

16.
Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the atomic dipole-dipole interaction, an evident Fano-line shape emerges in the scattering spectra of the single-dot configuration system.Moreover, Fano resonance can also be achieved by varying the atom-waveguide coupling strength and atomic detuning, in the presence of the atomic dipole-dipole interaction. Therefore, the atomic dipole-dipole interaction may be utilized as a possible way to control spectral Fano-like resonance. The feasibility with the experimental waveguide channels is also discussed.  相似文献   

17.
We study the transport of atoms across a localized Bose-Einstein condensate in a one-dimensional optical lattice. For atoms scattering off the condensate, we predict total reflection as well as full transmission for certain parameter values on the basis of an exactly solvable model. The findings of analytical and numerical calculations are interpreted by a tunable Fano-like resonance and may lead to interesting applications for blocking and filtering atom beams.  相似文献   

18.
We demonstrate both analytically and numerically the existence of optical pulling forces acting on particles located near plasmonic interfaces. Two main factors contribute to the appearance of this negative recoil force. The interference between the incident and reflected waves induces a rotating dipole with an asymmetric scattering pattern, while the directional excitation of surface plasmon polaritons (SPPs) enhances the linear momentum of scattered light. The strongly asymmetric SPP excitation is determined by spin–orbit coupling of the rotating dipole and surface plasmon polariton. As a result of the total momentum conservation, the force acting on the particle points in a direction opposite to the incident wave propagation. We derive analytical expressions for the force acting on dipolar particles placed in the proximity of plasmonic surfaces. Analytical expressions for this pulling force are derived within the dipole approximation and are in excellent agreement with results of electromagnetic numerical calculations. The forces acting on larger particles are analyzed numerically, beyond the dipole approximation.

  相似文献   


19.
Plasmonic interactions between an asymmetrically coated core–shell (ACCS) nanoparticle and an optical vortex produce a novel engagement of the spin angular momentum (SAM) and the orbital angular momentum (OAM) of the input. Simulations based on a discrete dipole approximation (DDA) indicate that the SAM and the OAM of the incident beam determine the modal order of resonance, correctly identifying the peak wavelength, and both the direction and magnitude of optical torque exerted upon the excited, localized plasmon resonance in the ACCS particle. These simulations also indicate higher-order resonances, including hexapole and octupole modes, and a zero-order resonance (expressible as a monopole mode), can be excited by judicious selection of the SAM and OAM. A detailed symmetry analysis shows how the multipoles associated with eigenmode excitations connect to the radiation multipoles at the heart of the multipole expansion. It is also shown how additional, distorted resonance modes due to the asymmetricity of the structure are also exhibited. These specific plasmonic characteristics, which cannot be realized by plane wave excitation, become possible through the ACCS asymmetry engaging with the distinct optical vortex nature of the excitation.  相似文献   

20.
Silver nanoparticles grown on a quartz substrate are investigated with optical and thermal desorption spectroscopy (TDS). Detailed information on the nanoparticle morphology is gained with new methods of data analysis. First, fitting the extinction spectra, using a comprehensive model, allows an estimation of the effective particle–particle distance. Second, the total surface area of the particles is determined with TDS of xenon. Third, the dependence of the plasmon resonance position on the amount of adsorbed xenon or benzene is used as a measure of the average particle size. The results for these three parameters, which are critical for potential applications of nanoparticle arrays, are shown to be mutually consistent. The methods demonstrated here are complementary to scanning probe techniques which characterize the particle morphology on a microscopic length scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号