首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cavitation-mediated bioeffects are primarily associated with the dynamic behaviors of bubbles in viscoelastic tissues, which involves complex interactions of cavitation bubbles with surrounding bubbles and tissues. The radial and translational motions, as well as the resultant acoustic emissions of two interacting cavitation bubbles in viscoelastic tissues were numerically investigated. Due to the bubble–bubble interactions, a remarkable suppression effect on the small bubble, whereas a slight enhancement effect on the large one were observed within the acoustic exposure parameters and the initial radii of the bubbles examined in this paper. Moreover, as the initial distance between bubbles increases, the strong suppression effect is reduced gradually and it could effectively enhance the nonlinear dynamics of bubbles, exactly as the bifurcation diagrams exhibit a similar mode of successive period doubling to chaos. Correspondingly, the resultant acoustic emissions present a progressive evolution of harmonics, subharmonics, ultraharmonics and broadband components in the frequency spectra. In addition, with the elasticity and/or viscosity of the surrounding medium increasing, both the nonlinear dynamics and translational motions of bubbles were reduced prominently. This study provides a comprehensive insight into the nonlinear behaviors and acoustic emissions of two interacting cavitation bubbles in viscoelastic media, it may contribute to optimizing and monitoring the cavitation-mediated biomedical applications.  相似文献   

2.
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.  相似文献   

3.
球状泡群内气泡的耦合振动   总被引:1,自引:0,他引:1       下载免费PDF全文
王成会  莫润阳  胡静  陈时 《物理学报》2015,64(23):234301-234301
振动气泡形成辐射场影响其他气泡的运动, 故多气泡体系中气泡处于耦合振动状态. 本文在气泡群振动模型的基础上, 考虑气泡间耦合振动的影响, 得到了均匀球状泡群内振动气泡的动力学方程, 以此为基础分析了气泡的非线性声响应特征. 气泡间的耦合振动增加了系统对每个气泡的约束, 降低了气泡的自然共振频率, 增强了气泡的非线性声响应. 随着气泡数密度的增加, 振动气泡受到的抑制增强; 增加液体静压力同样可抑制泡群内气泡的振动, 且存在静压力敏感区(1–2 atm, 1 atm=1.01325×105 Pa); 驱动声波对气泡振动影响很大, 随着声波频率的增加, 能够形成空化影响的气泡尺度范围变窄. 在同样的声条件、泡群尺寸以及气泡内外环境下, 初始半径小于5 μm 的气泡具有较强的声响应. 气泡耦合振动会削弱单个气泡的空化影响, 但可延长多气泡系统空化泡崩溃发生的时间间隔和增大作用范围, 整体空化效应增强.  相似文献   

4.
Liebler M  Dreyer T  Riedlinger RE 《Ultrasonics》2006,44(Z1):e319-e324
In medical applications of high intense focused ultrasound the mechanism of interaction between ultrasound waves and cavitation bubbles is responsible for several therapeutic effects as well as for undesired side effects. Based on a two-phase continuum approach for bubbly liquids, in this paper a numerical model is presented to simulate these interactions. The numerical results demonstrate the influence of the cavitation bubble cloud on ultrasound propagation. In the case of a lithotripter pulse an increased bubble density leads to significant changes in the tensile part of the pressure waveform. The calculations are verified by measurements with a fiber optical hydrophone and by experimental results of the bubble cloud dynamics.  相似文献   

5.
Inertial cavitation has been shown to enhance heating rates during high intensity focused ultrasound treatments. Cavitation dynamics will be affected by heating and by the changes in mechanical properties of tissue resultant from thermal denaturation; however, the nature of the change is not known and forms the focus of the current study. A Keller-Miksis equation is used to find the variation in inertial cavitation threshold with temperature in water and, when coupled with a Kelvin-Voigt viscoelastic model, in biological tissue. Simulated thermal ablation treatments in liver and muscle are used to explore the changes in cavitation dynamics, and the resultant frequency spectra of secondary acoustic emissions, due to tissue denaturation. Results indicate that viscosity is the key parameter controlling cavitation dynamics in biological tissues. The increase in viscosity during denaturation is predicted to increase inertial cavitation thresholds, leading to a substantial decrease in the higher harmonic content of the emitted pressure signal across a wide range of bubble radii. Experimental validation of these observations could offer improved methods to monitor therapeutic ultrasound treatments.  相似文献   

6.
The interest in application of ultrasonic cavitation for cleaning and surface treatment processes has increased greatly in the last decades. However, not much is known about the behavior of cavitation bubbles inside the microstructural features of the solid substrates. Here we report on an experimental study on dynamics of acoustically driven (38.5 kHz) cavitation bubbles inside the blind and through holes of PMMA plates by using high-speed imaging. Various diameters of blind (150, 200, 250 and 1000 µm) and through holes (200 and 1000 µm) were investigated. Gas bubbles are usually trapped in the holes during substrate immersion in the liquid thus preventing their complete wetting. We demonstrate that trapped gas can be successfully removed from the holes under ultrasound agitation. Besides the primary Bjerknes force and acoustic streaming, the shape oscillations of the trapped gas bubble seem to be a driving force for bubble removal out of the holes. We further discuss the bubble dynamics inside microholes for water and Cu2+ salt solution. It is found that the hole diameter and partly the type of liquid media influences the number, size and dynamics of the cavitation bubbles. The experiments also showed that a large amount of the liquid volume inside the holes can be displaced within one acoustic cycle by the expansion of the cavitation bubbles. This confirmed that ultrasound is a very effective tool to intensify liquid exchange processes, and it might significantly improve micro mixing in small structures. The investigation of the effect of ultrasound power on the bubble density distribution revealed the possibility to control the cavitation bubble distribution inside the microholes. At a high ultrasound power (31.5 W) we observed the highest bubble density at the hole entrances, while reducing the ultrasound power by a factor of ten shifted the bubble locations to the inner end of the blind holes or to the middle of the through holes.  相似文献   

7.
In this investigation, an attempt has been made to establish the physical mechanism of sonochemical synthesis of zinc ferrite with concurrent analysis of experimental results and simulations of cavitation bubble dynamics. Experiments have been conducted with mechanical stirring as well as under ultrasound irradiation with variation of pH and the static pressure of the reaction medium. Results of this study reveal that physical effects produced by transient cavitation bubbles play a crucial role in the chemical synthesis. Generation of high amplitude shock waves by transient cavitation bubbles manifest their effect through in situ micro-calcination of metal oxide particles (which are generated through thermal hydrolysis of metal acetates) due to energetic collisions between them. Micro-calcination of oxide particles can also occur in the thin liquid shell surrounding bubble interface, which gets heated up during transient collapse of bubbles. The sonochemical effect of production of OH radicals and H2O2, in itself, is not able to yield ferrite. Moreover, as the in situ micro-calcination involves very small number of particles or even individual particles (as in intra-particle collisions), the agglomeration between resulting ferrite particles is negligible (as compared to external calcination in convention route), leading to ferrite particles of smaller size (6 nm).  相似文献   

8.
Estimates are made of the effect of tissue confinement on the response of small bubbles subjected to lithotriptor shock pressures. To do this the Rayleigh-Plesset equation, which governs the dynamics of spherical bubbles, is generalized to treat a bubble in a liquid region (blood), which is in turn encased within an elastic membrane (like a vessel's basement membrane), beyond which a Voigt viscoelastic material models the exterior tissue. Material properties are estimated from a range of measurements available for kidneys and similar soft tissues. Special attention is given to the constitutive modeling of the basement membranes because of their expected importance due to their proximity to the bubble and their toughness. It is found that the highest expected values for the elasticity of the membrane and surrounding tissue are insufficient to suppress bubble growth. The reduced confinement of a cylindrical vessel should not alter this conclusion. Tissue viscosities taken from ultrasound measurements suppress bubble growth somewhat, though not to a degree expected to resist injury. However, the higher reported viscosities measured by other means, which are arguably more relevant to the deformations caused by growing bubbles, do indeed significantly suppress bubble expansion.  相似文献   

9.
The oscillation and migration of bubbles within an intensive ultrasonic field are important issues concerning acoustic cavitation in liquids.We establish a selection map of bubble oscillation mode related to initial bubble radius and driving sound pressure under 20 kHz ultrasound and analyze the individual-bubble migration induced by the combined effects of pressure gradient and acoustic streaming.Our results indicate that the pressure threshold of stable and transient cavitation decreases with the increasing initial bubble radius.At the pressure antinode,the Bjerknes force dominates the bubble migration, resulting in the large bubbles gathering toward antinode center,whereas small bubbles escape from antinode.By contrast,at the pressure node,the bubble migration is primarily controlled by acoustic streaming,which effectively weakens the bubble adhesion on the container walls,thereby enhancing the cavitation effect in the whole liquid.  相似文献   

10.
Performance and efficiency of numerous cavitation enhanced applications in a wide range of areas depend on the cavitation bubble size distribution. Therefore, cavitation bubble size estimation would be beneficial for biological and industrial applications that rely on cavitation. In this study, an acoustic method using a wide beam with low pressure is proposed to acquire the time intensity curve of the dissolution process for the cavitation bubble population and then determine the bubble size distribution. Dissolution of the cavitation bubbles in saline and in phase-shift nanodroplet emulsion diluted with undegassed or degassed saline was obtained to quantify the effects of pulse duration (PD) and acoustic power (AP) or peak negative pressure (PNP) of focused ultrasound on the size distribution of induced cavitation bubbles. It was found that an increase of PD will induce large bubbles while AP had only a little effect on the mean bubble size in saline. It was also recognized that longer PD and higher PNP increases the proportions of large and small bubbles, respectively, in suspensions of phase-shift nanodroplet emulsions. Moreover, degassing of the suspension tended to bring about smaller mean bubble size than the undegassed suspension. In addition, condensation of cavitation bubble produced in diluted suspension of phase-shift nanodroplet emulsion was involved in the calculation to discuss the effect of bubble condensation in the bubble size estimation in acoustic droplet vaporization. It was shown that calculation without considering the condensation might underestimate the mean bubble size and the calculation with considering the condensation might have more influence over the size distribution of small bubbles, but less effect on that of large bubbles. Without or with considering bubble condensation, the accessible minimum bubble radius was 0.4 or 1.7 μm and the step size was 0.3 μm. This acoustic technique provides an approach to estimate the size distribution of cavitation bubble population in opaque media and might be a promising tool for applications where it is desirable to tune the ultrasound parameters to control the size distribution of cavitation bubbles.  相似文献   

11.
Chen H  Li X  Wan M 《Ultrasonics》2006,44(Z1):e427-e429
In many therapeutic applications of high-intensity focused ultrasound (HIFU) the appearance of cavitation bubbles is unavoidable, whereas the dynamics of the bubbles induced by HIFU have not been clarified. The objective of the present work is to observe the inception process of cavitation bubble clouds generated by HIFU transducer in water using high-speed photography. Sequential images captured within 600 micros after the onset of ultrasound transmission show the dynamics of cavitation bubbles' generation, growth, deformation, expansion and collapse in the focal region. However, when the observation time is narrowed to the initial 145 micros, both the still and streak images reveal that the cavitation bubbles astonishingly stay stable in the focal region for at least 60 micros. The results imply that through adjusting the HIFU exposure time while other physical parameters are appropriately chosen, it might be possible to control the generation of stable cavitation bubbles locally in the focal region.  相似文献   

12.
In this paper, high-speed macro-photography is used to investigate the dynamics of small bubbles collapsing at the free surface of a glass when filled with champagne. Immediately after the rupture of a bubble cap, adjoining bubbles are stretched toward the lowest part of the cavity left by the bursting bubble, leading to unexpected and short-lived flower-shaped structures. Our results strongly suggest stresses in the bubble cap of adjacent bubbles much higher than those observed around an isolated single collapsing cavity.  相似文献   

13.
A model of cavitation bubbles is derived in liquid confined in an elastic sealed vessel driven by ultrasound. In this model, an assumption that the pressure acting on the sealed vessel due to bubble pulsations is proportional to total volume change of bubbles is made. Numerical simulations are carried out for a single bubble and for bubbles. The results show that the pulsation of a single bubble can be suppressed to a large extent in sealed vessel, and that of two matched bubbles with same ambient radius can be further suppressed. However, when two mismatched bubbles have the same ambient radii, an interesting breathing phenomenon takes place, where one bubble pulsates inversely with the other one. Due to this breathing phenomenon the suppression effect becomes weak, so the maximum radii of two mismatched bubbles can be larger than that of a single bubble or that of two matched bubbles in sealed vessel. Besides that, for two mismatched bubbles with different ambient radii, the small one in sealed vessel under some certain parameters can pulsate as strong as or even stronger than that of a single bubble in an open vessel.  相似文献   

14.
Using a model that with or without considering the interaction between bubbles through the radiated pressure waves, numerical simulations of cavitation bubbles have been performed in order to study the effect of the bubble–bubble interaction on radial pulsations of bubbles. Comparing the results obtained by with or without considering the bubble–bubble interaction, it is suggested that the suppression or enlargement property of expansion ratios of bubbles due to the bubble–bubble interaction largely depends on the ultrasound parameters, the ambient bubble radii, the distances between bubbles and the number of bubbles (in multi-bubble environment, the last two aspects can be expressed using the coupling strength). The frequency response curve of expansion ratio decreases and shifts to left due to the bubble–bubble interaction and the larger the coupling strength is, the more the left-shifting is.  相似文献   

15.
A model for the dynamics of gas bubbles in soft tissue   总被引:1,自引:0,他引:1  
Understanding the behavior of cavitation bubbles driven by ultrasonic fields is an important problem in biomedical acoustics. Keller-Miksis equation, which can account for the large amplitude oscillations of bubbles, is rederived in this paper and combined with a viscoelastic model to account for the strain-stress relation. The viscoelastic model used in this study is the Voigt model. It is shown that only the viscous damping term in the original equation needs to be modified to account for the effect of elasticity. With experiment determined viscoelastic properties, the effects of elasticity on bubble oscillations are studied. Specifically, the inertial cavitation thresholds are determined using R(max)/R(0), and subharmonic signals from the emission of an oscillating bubble are estimated. The results show that the presence of the elasticity increases the threshold pressure for a bubble to oscillate inertially, and subharmonic signals may only be detectable in certain ranges of radius and pressure amplitude. These results should be easy to verify experimentally, and they may also be useful in cavitation detection and bubble-enhanced imaging.  相似文献   

16.
According to classical nucleation theory, a gas nucleus can grow into a cavitation bubble when the ambient pressure is negative. Here, the growth process of a gas nucleus in a micro-cavity was simplified to two “events”, and the full confinement effect of the surrounding medium of the cavity was considered by including the bulk modulus in the equation of state. The Rayleigh–Plesset-like equation of the cavitation bubble in the cavity was derived to model the radial oscillation and translational motion of the cavitation bubble in the local acoustic field. The numerical results show that the nucleation time of the cavitation bubble is sensitive to the initial position of the gas nucleus. The cavity size affects the duration of the radial oscillation of the cavitation bubble, where the duration is shorter for smaller cavities. The equilibrium radius of a cavitation bubble grown from a gas nucleus increases with increasing size of the cavity. There are two possible types of translational motion: reciprocal motion around the center of the cavity and motion toward the cavity wall. The growth process of gas nuclei into cavitation bubbles is also dependent on the compressibility of the surrounding medium and the magnitude of the negative pressure. Therefore, gas nuclei in a liquid cavity can be excited by acoustic waves to form cavitation bubbles, and the translational motion of the cavitation bubbles can be easily observed owing to the confining influence of the medium outside the cavity.  相似文献   

17.
In a previous study, we found that cavitation bubbles cause the ultrasonic destruction of microcapsules containing oil in a shell made of melamine resin. The cavitation bubbles can be smaller or larger than the resonance size; smaller bubbles cause Rayleigh contraction, whereas larger bubbles are not involved in the sonochemical reaction. The activity in and around the bubble (e.g., shear stress, shock wave, microjet, sonochemical reaction, and sonoluminescence) varies substantially depending on the bubble size. In this study, we investigated the mechanism of the ultrasonic destruction of microcapsules by examining the correlations between frequency and microcapsule destruction rate and between microcapsule size and cavitation bubble size. We evaluated the bubbles using multibubble sonoluminescence and the bubble size was changed by adding a surfactant to the microcapsule suspension. The microcapsule destruction was frequency dependent. The main cause of microcapsule destruction was identified as mechanical resonance, although the relationship between bubble size and microcapsule size suggested that bubbles smaller than or equal to the microcapsule size may also destroy microcapsules by applying shear stress locally.  相似文献   

18.
The evolution of acoustic Lichtenberg figure (ALF) in ultrasound fields is studied using high-speed photography. It is observed that bubbles travel along the branch to the aggregation region of an ALF, promoting the possibility of large bubble or small cluster formation. Large bubbles move away from the aggregation region while surrounding bubbles are attracted into this structure, and a bubble transportation cycle arises in the cavitation field. A simplified model consisting of a spherical cluster and a chain of bubbles is developed to explain this phenomenon. The interaction of the two units is analyzed using a modified expression for the secondary Bjerknes force in this system. The model reveals that clusters can attract bubbles on the chain within a distance of 2 mm, leading to a bubble transportation process from the chain to the bubble cluster. Many factors can affect this process, including the acoustic pressure, frequency, bubble density, and separation distance. The larger the bubble in the cluster, the broader the attraction region. Therefore, the presence of large bubbles might enhance the process in this system. Local disturbances in bubble density could destroy the ALF structure. The predictions of the model are in good agreement with the experimental phenomena.  相似文献   

19.
亚临界水中超声激励空化泡动力学分析   总被引:2,自引:2,他引:0       下载免费PDF全文
杨日福  赵超  丘泰球 《应用声学》2012,31(3):184-189
考察亚临界水中压力和温度对超声空化泡动力学的影响。应用非线性Rayleigh-Plesset方程模拟空化泡运动过程,并利用Matlab软件编程求数值解,用碘量法测定超声在亚临界水中的声空化产额。结果表明:当亚临界水的压力相似文献   

20.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号