首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We show that spin-gravity interaction can distinguish between Dirac and Majorana neutrino wave packets propagating in a Lense-Thirring background. Using time-independent perturbation theory and the gravitational phase to generate a perturbation Hamiltonian with spin-gravity coupling, we show that the associated matrix element for the Majorana neutrino differs significantly from its Dirac counterpart. This difference can be demonstrated through significant gravitational corrections to the neutrino oscillation length for a two-flavor system, as shown explicitly for SN 1987A.  相似文献   

2.
3.
4.
《Physics letters. [Part B]》1986,167(3):295-300
Scalar neutrinos and massive Dirac neutrinos in the mass range 2–20 GeV have been proposed as candidates to provide the dark matter in the halo of our galaxy. If so, the particles are captured inthe Earth with an efficiency of 10−10 − 10−7. For Dirac neutrinos more massive than about 9 GeV and scalar neutrinos more massive than abour 12 GeV, enough are captured to produce an observable neutrino flux at the surface of the Earth (∼ 10−2 cm−2 s−1 for sneutrinos and ∼ 1.4 × 10−3 cm−2 s−1 for Dirac neutrinos), several orders of magnitude above atmospheric background and above what is observed. Hence stable scalar neutrinos of mass 12–20 GeV or Dirac neutrinos of mass 9–20 GeV cannot be the dominant component of the halo.  相似文献   

5.
6.
Heavy right-handed neutrinos are of current interest. The interactions and decay of such neutrinos determine their decoupling epoch during the evolution of the universe. This in turn affects various observable features like the energy density, nucleosynthesis, CMBR spectrum, galaxy formation and baryogenesis. Here, we consider reduction of right-handed electron-type Majorana neutrinos, in the left–right symmetric model, by the channel and the channel originating from an anomaly, involving the gauge group, as well as decay of such neutrinos. We study the reduction of these neutrinos for different ranges of left–right model parameters, and find that, if the neutrino mass exceeds the right-handed gauge boson mass, then the neutrinos never decouple for realistic values of the parameters, but, rather, decay in equilibrium. Because there is no out-of-equilibrium decay, no mass bounds can be set for the neutrinos. Received: 1 November 2000 / Published online: 23 February 2001  相似文献   

7.
It is shown that the future SNO and Super-Kamiokande experiments, in which high energy8B neutrinos will be detected through the observation of CC, NC and –e elastic scattering processes, could allow to reveal in a model independent way the presence of sterile neutrinos in the flux of solar neutrinos on the earth. Lower bounds for different averaged values of the probability of transition of solar ve'S into sterile states and for the total flux of8B neutrinos are derived in terms of measurable quantities. The possibilities to reveal the presence of v and/or v in the solar neutrino flux on the earth are also considered and the case of transitions of solar ve'S only into sterile states is discussed. Some numerical results for a simple model with v–vs mixing are given.  相似文献   

8.
We use the results of first-principles electronic structure calculations and a strong coupling perturbation approach, together with general theoretical arguments, to illustrate the differences in super-exchange interactions between the copper-oxides and iron-pnictides. We provide a possible explanation for the two magnetic ground states within the same theoretical foundation. Contrary to the emerging view that magnetic order in the iron-pnictides is of itinerant nature, we argue that the observed magnetic moment is small because of frustration introduced by the electrons of the Fe orbitals as they compete to impose their preferred magnetic ordering.  相似文献   

9.
Mechanisms for neutrinoless double β-decay, which do not require intermediate Majorana neutrinos, are discussed in the context of supersymmetric models with R-parity violating interactions. The resulting currents are of the S, P, T type rather than those familiar from the V - A theory. The effective transition operators associated with such currents are constructed. The present experimental limits are then used to provide additional constraints for some of the parameters of supersymmetric models.  相似文献   

10.
11.
Usually it is supposed that Majorana neutrino produced in the superposition state χ L = ν L + (ν L ) c and then follows the neutrinoless double beta decay. But since the standard weak interactions are chiral invariant then neutrino at production has definite helicity (ν L and (ν L ) c have opposite spirality). Then these neutrinos are separately produced and their superposition state cannot appear. Thus we see that for unsuitable helicity the neutrinoless double β decay is not possible even if it is supposed that neutrino is a Majorana particle (i.e. there is not a lepton number which is conserved). Also transition of Majorana neutrino ν L into antineutrino (ν L ) c at their oscillations is forbidden since helicity in vacuum holds. Transition Majora neutrino ν L into (ν R ) c (i.e., ν L → (ν R ) c ) at oscillations is unobserved since it is supposed that mass of (ν R ) c is very big. If neutrino is a Dirac particle there can be transition of ν L neutrino into (sterile) antineutrino $ \bar v_R $ \bar v_R (i.e., ν L → $ \bar v_R $ \bar v_R ) at neutrino oscillations if there takes place double violation of lepton number. It is necessary also to remark that introducing of a Majorana neutrino implies violation of global and local gauge invariance in the standard weak interactions.  相似文献   

12.
By combining data from cosmic microwave background experiments (including the recent WMAP third year results), large scale structure, and Lyman-alpha forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless+1 massive neutrino case, we bound the mass of the sterile neutrino to ms<0.26 eV (0.44 eV) at 95% (99.9%) C.L., which excludes at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We generalize the analysis to account for active neutrino masses and the possibility that the sterile abundance is not thermal. In the latter case, the contraints in the plane are nontrivial. For a mass of >1 or <0.05 eV, the cosmological energy density in sterile neutrinos is always constrained to be omeganu<0.003 at 95% C.L., but for a mass of approximately 0.25 eV, omeganu can be as large as 0.01.  相似文献   

13.
The neutrinoless double-beta (0νββ) decay is a unique process used to identify the Majorana nature of massive neutrinos, and its rate depends on the size of the effective Majorana neutrino mass <m>ee. We put forward a novel ‘coupling-rod’ diagram to describe <m>ee in the complex plane, by which the effects of the neutrino mass ordering and CP-violating phases on <m>ee are intuitively understood. We show that this geometric language allows us to easily obtain the maximum and minimum of |<m>ee|. It remains usable even if there is a kind of new physics contributing to <m>ee, and it can also be extended to describe the effective Majorana masses <m>, <m>, <m>μμ, <m>μτ and <m>ττ which may appear in some other lepton-number violating processes.  相似文献   

14.
We formulate a premetric version of classical electrodynamics in terms of the excitation and the field strength F=(E,B). A local, linear, and symmetric spacetime relation between H and F is assumed. It yields, if electric/magnetic reciprocity is postulated, a Lorentzian metric of spacetime thereby excluding Euclidean signature (which is, nevertheless, discussed in some detail). Moreover, we determine the Dufay law (repulsion of like charges and attraction of opposite ones), the Lenz rule (the relative sign in Faraday’s law), and the sign of the electromagnetic energy. In this way, we get a systematic understanding of the sign rules and the sign conventions in electrodynamics. The question in the title of the paper is answered affirmatively.  相似文献   

15.
The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature: for high enough magnetic fields, comparable to the ones expected to be created in noncentral high-energy heavy ion collisions at RHIC and the LHC, the original crossover is turned into a first-order transition. We illustrate this effect within the linear sigma model with quarks to one loop in the scheme for Nf=2.  相似文献   

16.
This note is a part of my effort to rid quantum mechanics (QM) nonlocality. Quantum nonlocality is a two faced Janus: one face is a genuine quantum mechanical nonlocality (defined by the Lüders’ projection postulate). Another face is the nonlocality of the hidden variables model that was invented by Bell. This paper is devoted the deconstruction of the latter. The main casualty of Bell’s model is that it straightforwardly contradicts Heisenberg’s uncertainty and Bohr’s complementarity principles generally. Thus, we do not criticize the derivation or interpretation of the Bell inequality (as was done by numerous authors). Our critique is directed against the model as such. The original Einstein-Podolsky-Rosen (EPR) argument assumed the Heisenberg’s principle without questioning its validity. Hence, the arguments of EPR and Bell differ crucially, and it is necessary to establish the physical ground of the aforementioned principles. This is the quantum postulate: the existence of an indivisible quantum of action given by the Planck constant. Bell’s approach with hidden variables implicitly implies rejection of the quantum postulate, since the latter is the basis of the reference principles.  相似文献   

17.
We use the Ly-alpha forest power spectrum measured by the Sloan Digital Sky Survey and high-resolution spectroscopy observations in combination with cosmic microwave background and galaxy clustering constraints to place limits on a sterile neutrino as a dark matter candidate in the warm dark matter scenario. Such a neutrino would be created in the early Universe through mixing with an active neutrino and would suppress structure on scales smaller than its free-streaming scale. We ran a series of high-resolution hydrodynamic simulations with varying neutrino masses to describe the effect of a sterile neutrino on the Ly-alpha forest power spectrum. We find that the mass limit is m(s) >13 keV at 95% C.L. (9 keV at 99.9%), which is above the upper limit allowed by x-ray constraints, excluding this candidate from being all of the dark matter in this model.  相似文献   

18.
At a qualitative level, it is well known that QCD featuring a large number of quark flavors must differ drastically from actual QCD. However, it is possible to consider the large-Nf limit (where Nf is the number of light flavors in QCD) such that the basic dynamics of the system remains unchanged. This is the region of chiral perturbation theory, where the limit Nf → ∞ is simultaneously the limit of a large number of colors, Nc. Features are indicated that make it possible, in such a situation, to compare analytically the same quantity in a simplified model of actual QCD and in the large-Nf limit, and methods are proposed for calculating these features. Calculations in the limit Nf → ∞ are of no use in assessing quantities of the theory at small N f.  相似文献   

19.
Possible mechanisms for the production of low-mass neutrinos and sterile neutrinos are considered. The quark mixing angles are calculated under the assumption that the traces of left-right symmetry are stable with respect to the masses of constituent quarks. Order-of-magnitude estimates of the neutrino masses are obtained with the aid of experimental data on neutrino oscillations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号