首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“蛋黄蛋壳”结构纳米材料,具有易于调控的“蛋黄”、“蛋壳”和“空腔”结构,可视作“纳米反应器”,在催化、储能等领域表现出显著的应用潜力。尤其在电化学能源存储和转换方面,该结构纳米电极具有大的比表面积和独特的核壳结构,在充放电过程中可缓解电极的体积变化,提供快速的离子/电子输运通道,强化中间产物的吸附和提升转换反应效率等,能显著提高电极稳定性、倍率性能和循环性能,是一类较为理想的电极材料。本文针对“蛋黄蛋壳”结构纳米电极在锂/钠离子电池、锂硫电池等新兴二次电池领域的实际应用,总结了具有该结构纳米电极的设计与合成策略,包括:模板法、奥斯特瓦尔德熟化、电化学置换、克肯达尔效应等,评述了各种策略的优缺点以及电极材料的应用进展,最后对该类材料在锂/钠体系及锂硫电池二次电池方面的研究与应用前景进行了展望。  相似文献   

2.
以V_2O_5空心球作为锂硫电池的正极材料,将其用于存储硫和限制多硫化物的穿梭效应。V_2O_5空心球的平均直径约为500 nm,为存储硫提供了更多空间并适应硫电极的体积变化。同时,V_2O_5对多硫化物具有很强的化学吸附性,可以有效地限制多硫化物的穿梭效应。由于中空结构增加了硫的存储,并通过化学键牢固地吸附多硫化物,使该锂硫电池同时具有高容量和良好的稳定性。V_2O_5/S作为正极的锂硫电池在0.1C倍率时显示出1 439 mAh·g~(-1)的高可逆容量,并在1C的倍率下循环300次后的容量约为600 mAh·g~(-1)。  相似文献   

3.
总结了近几年来锂硫电池正极材料的研究进展,简要阐释了锂硫电池正极材料的研究现状、存在的问题及其面临的挑战.通过碳材料的引入,导电聚合物的复合,金属氧化物的添加均不同程度地提高了硫电极材料的电导率,有效抑制了多硫化物的溶解,为体积膨胀提供了空间,从而改善了锂硫电池的活性物质利用率和循环稳定性.简化工艺,降低成本,提高硫的负载量,这将是下一阶段锂硫电池研究的重点.  相似文献   

4.
以V2O5空心球作为锂硫电池的正极材料,将其用于存储硫和限制多硫化物的穿梭效应。V2O5空心球的平均直径约为500 nm,为存储硫提供了更多空间并适应硫电极的体积变化。同时,V2O5对多硫化物具有很强的化学吸附性,可以有效地限制多硫化物的穿梭效应。由于中空结构增加了硫的存储,并通过化学键牢固地吸附多硫化物,使该锂硫电池同时具有高容量和良好的稳定性。V2O5/S作为正极的锂硫电池在0.1C倍率时显示出1439 mAh·g-1的高可逆容量,并在1C的倍率下循环300次后的容量约为600 mAh·g-1。  相似文献   

5.
随着全球经济快速发展对高效绿色能源需求的不断增长,锂-硫电池因具有较高的能量密度,成为了下一代高能量密度二次电池研发的重点.然而,锂-硫电池面临的循环寿命短、库仑效率低、安全性能差、较高自放电等问题,使其目前还很难实现商品化.锂-硫电池存在的这些问题主要与正极活性硫材料的高绝缘性、放电过程中产生的多硫化物溶解于电解液、硫正极在充放电过程中的体积膨胀与收缩、以及锂负极支晶化等有关.通过从锂-硫电池硫复合正极、电解液、黏结剂和负极等4个方面综述了高比能锂-硫电池的最新研究进展,其中重点介绍了硫正极复合材料的进展情况.  相似文献   

6.
曾攀  袁程  刘根林  郜杰昌  李彦光  张亮 《催化学报》2022,(12):2946-2965
锂硫电池具有高的理论能量密度(2600 Wh kg-1),是传统金属氧化物正极和石墨负极组装的锂离子电池能量密度的3-5倍.同时,锂硫电池以单质硫作为活性物质,具有环境友好及价格低廉的优势,因此被认为是最具发展前景的电化学储能系统之一.然而,锂硫电池的商业化应用仍面临诸多挑战和障碍,比如单质硫和放电产物硫化锂的绝缘特性,活性物质充放电过程中的体积变化以及多硫化物穿梭导致的活性物质不可逆损失、低的库伦效率及差的循环稳定性等.对于单质硫及放电产物的绝缘特性,可通过构建高导电的网络结构或者减小硫颗粒尺寸来克服.对于充放电过程中活性物质的体积变化问题,可通过制备柔性电极或者设计具有分级多孔的三维网络结构材料来克服.唯独对多硫化物的穿梭问题,还没有找到一种方案来有效解决.锂硫电池前期的研究工作主要通过调控载体材料的物理结构实现对多硫化物的物理及化学吸附,从而在一定程度上抑制了多硫化物的穿梭.然而多硫化物穿梭的产生不仅仅与多硫化物的迁移扩散有关,更与载体材料界面处多硫化物迟缓的氧化还原转化有关.当载体材料界面处多硫化物无法实现快速转化时就会导致界面处多硫化物的富集,进而导致严...  相似文献   

7.
富锂正极材料因具有较高的理论能量密度,被视为极具发展潜能的新一代正极材料,但该材料在循环过程中容量和电压衰减显著,导致其实际商业应用受阻.本文综合评述了通过结构设计和表面调控提高富锂正极材料储锂性能的研究进展,介绍了富锂正极材料的充放电工作机制,及导致其比容量和电压衰减的原因,讨论了近年来通过新型结构设计(如构筑蛋黄-蛋壳中空结构、中空多壳层结构等)和表面调控(如尺寸控制、暴露晶面控制、表面尖晶石化、表面包覆、表面掺杂等)策略,抑制富锂正极材料表面氧析出和晶型转变并稳定材料结构,从而抑制电压和比容量衰减,有效提高电池的循环寿命和库伦效率的相关研究成果,最后,提出了通过结构设计和表面调控提高富锂正极材料电化学性能面临的挑战,并对未来发展方向进行了展望.  相似文献   

8.
锂硫电池由于其超高理论能量密度(2567 Wh·kg^?1),较低的成本,以及环境友好性,被视为下一代储能设备的有力竞争者之一.鉴于粘结剂在稳定硫正极结构和抑制多硫化物穿梭方面可发挥重要作用,发展高性能硫正极粘结剂是改善锂硫电池性能的有效途径之一.本文研究了以果胶作为锂硫电池正极粘结剂的可行性.研究表明,采用果胶作为粘结剂的锂硫电池在电化学循环测试中首次放电比容量可达1210.6 mAh·g^?1,并且在200次循环后仍有837.4 mAh·g^?1的放电比容量,明显优于羧甲基纤维素钠-丁苯橡胶复合粘结剂的电池性能.经研究证实果胶粘结剂性能优良的原因在于其可以有效确保多壁碳纳米管/硫复合正极的结构稳定性并抑制多硫化物的穿梭.  相似文献   

9.
惠鹏  杨蓉  邓七九  燕映霖  许云华 《化学通报》2019,82(11):982-988
锂硫电池因其能量密度高、原料丰富和价格低廉等优势而被认为是下一代的重要储能器件。但是,锂硫电池的发展仍面临诸多问题,包括多硫化物的穿梭效应、单质硫的导电性差、充电过程中硫体积膨胀导致的库仑效率差、容量快速衰减以及锂负极的腐蚀等。近年来,金属氧化物由于具有可吸附多硫化物、提高多硫化物之间的相互转化能力、形成3D形态纳米级结构及对主体材料与多硫化物之间的结合能发挥着关键作用等优点在锂硫电池正极材料的改性方面得到广泛应用。本文综述了多类金属氧化物(过渡金属氧化物、二元及多元金属氧化物、其他金属氧化物)在锂硫电池正极复合材料改性中的研究进展,并对金属氧化物在锂硫电池中的应用前景进行了展望。  相似文献   

10.
周兰  余爱水 《电化学》2015,21(3):211-220
二次锂硫电池被视为最具有发展潜力的下一代高能量密度二次电池之一. 但由于正极硫的电导率低(5×10-30 S·cm-1),且在放电过程中产生的中间体多硫化物易溶于有机电解液,致使锂硫电池活性物质利用率降低,溶解后的多硫化物还会迁移到负极,被还原成不溶物Li2S2/Li2S而沉积于负极锂,使电极结构遭受破坏,造成电池容量大幅衰减,循环性能差,从而限制了进一步的开发应用. 研究表明,以碳作为导电骨架的硫碳复合正极材料能在不同程度上解决上述问题,从而有效提高了锂硫电池的放电容量和循环性能. 本文综述了近年来国内外报道的各种锂硫电池正极材料的研究进展,结合作者课题组的研究,重点探讨了硫碳复合正极材料,并对其今后的发展趋势进行了展望.  相似文献   

11.
锂硫电池(LSBs)由于单质硫正极具有超高能量密度(2600 Wh/kg)和超高理论比容量(1675 mAh/g),且环境友好、成本低廉,被认为是最有前景的储能体系之一。然而,硫正极的绝缘性和严重体积膨胀以及多硫化物(LiPSs)的“穿梭效应”等问题导致活性物质利用率低、循环稳定性差及电化学反应动力不足,严重阻碍了LSBs的商业化发展。最新研究表明,过渡金属硫化物作为载体或添加剂能够显著改善LSBs正极材料的电化学性能。本文从等效/共正极作用、导电性增强作用、LiPSs吸附作用和电化学反应催化作用四个方面梳理了过渡金属硫化物在LSBs正极材料中的改性机理,并指出多元过渡金属硫化物复合﹑纳米结晶和量子化作为增加比表面积和活性位点的方法是过渡金属硫化物用于锂硫电池正极材料的重要发展方向,可大幅提升LSBs的电化学性能。  相似文献   

12.
锂-硫(Li-S)电池具有较高的理论比容量(约1 675 mAh·g-1)和能量密度(约2 600 Wh·g-1),被认为是继锂离子电池之后最有前途的下一代高能量密度电池.Li-S电池在实现产业化之前需要克服硫正极诸多技术瓶颈,主要有硫的导电性差、多硫化物的穿梭效应与硫电极体积膨胀等.本文着重梳理了氧化还原媒介体分子在硫正极改性研究上的进展,并对硫正极的未来发展趋势进行了展望.  相似文献   

13.
提出在电解液中加入电荷转移中间体改善锂硫电池低温性能的思路,在电解液中添加芘作为电荷转移中间体,加速低温下聚苯胺锂硫电池电化学反应的平衡过程.循环伏安研究证明,芘在锂硫电池放电过程中的高压平台附近具有电化学活性,并通过X射线光电子能谱证实芘的引入能够使锂硫电池在低温下提高多硫化物平衡速率,延长第一平台,生成更多长链多硫化锂.对同样电极材料组成的聚苯胺/硫复合正极材料构成的锂硫电池,当在电解液中加入0.1 mol/L的芘时,相比于不含芘的锂硫电池,其第50次充放电循环下容量在0oC时能够提升22.8%,而在-15oC时能提升25.1%.  相似文献   

14.
硫正极较差的性能严重阻碍了锂硫电池的商业化进程,这些因素包括较低的导电能力以及在促进多硫化物转化方面较差的催化活性。我们开发了一种基于配体调控合成和低温热解的规模化策略来制备高效的正极复合材料(Co-N-C@KB),这种材料由富含Co-N-C活性位点的科琴黑(KB)组成。原子级分散的Co-N-C活性位点被证明有利于多硫化物在正极的转化,因而可以提高锂硫电池的容量和循环寿命。基于此,Co-N-C@KB作为正极可以使锂硫电池获得高达1 442 mAh·g-1的初始放电容量,并且该电池在长时间的稳定性测试中具有出色的容量保持能力。  相似文献   

15.
由于正极活性物质硫具有能量密度高、成本低廉和储量丰富等优点,锂硫(Li-S)电池受到了人们的极大关注。然而,锂硫电池充放电过程中产生的多硫化锂的“穿梭效应”严重阻碍了其实用化进程。为了解决这个问题,本研究借助动物软骨的组成和结构特点,制备了纳米羟基磷灰石@多孔碳(nano-HA@CCPC)复合材料,并以此设计了面向正极的锂硫电池隔膜涂层。研究表明,纳米羟基磷灰石不仅对多硫化物具有吸附固定作用,并且对多硫化锂的转化具有催化作用,加快了多硫化锂的氧化还原动力学,有效地提升了活性物质硫的利用率。另外,软骨基碳复合材料的多孔结构形成了很好的导电网络,为电化学反应提供了优良的电子传导路径;也有利于电解液的浸润,加快了离子传输;碳的氮原子掺杂进一步限制了多硫化物的穿梭效应。因此,采用nano-HA@CCPC隔膜涂层的锂硫电池表现出较长的循环寿命、低的容量损失以及高的倍率性能。在0.5 C下,循环325次后,电池仍然能保持815 mAh·g-1的放电比容量,并且每次的容量衰减率仅为0.051%。nano-HA@CCPC的设计制备将为锂硫电池的发展提供新材料。  相似文献   

16.
固态锂硫电池具有高能量密度和高安全性的潜在优势,被认为是最有前景的下一代储能体系之一。虽然固态电解质的应用有效地抑制了传统锂硫电池存在的“穿梭效应”和自放电现象,固态锂硫电池仍面临着多相离子/电子输运、电极/电解质界面稳定性、化学-机械稳定性、电极结构稳定性和锂枝晶生长等关键问题亟待解决。针对以上问题,本综述对近年来固态电解质、硫基复合正极、锂金属及锂合金负极以及电极/电解质界面的研究进行了详细的论述。作为固态锂硫电池的重要组成部分,固态电解质近年来受到了研究者们的广泛关注。本文首先对在锂硫电池中得到广泛应用的聚合物基、氧化物基、硫化物基固态电解质的种类和性质进行了概述,并对其在固态锂硫电池中的最新应用进行了系统的总结。在此基础上,对以单质硫、硫化锂、金属硫化物为活性物质的复合硫正极、锂金属及锂合金负极的反应机理以及面临的挑战进行了归纳和比较,对其解决策略进行了总结和分析。此外,对制约固态锂硫电池性能的电极/电解质界面离子/电子输运以及界面相容性问题及其改性策略进行了系统的阐述。最后,对固态锂硫电池的未来发展进行了展望。  相似文献   

17.
锂硫电池凭借其高的理论能量密度(2600 W·h·kg-1)、丰富廉价的材料来源、且对环境友好等优势,而引起了人们的广泛关注.然而,锂硫电池活性物质导电性差、多硫化物易溶于有机电解液等问题所导致的硫正极倍率性能和循环稳定性差,仍然是困扰锂硫电池发展的挑战性难题.我们设计并以廉价易得的小分子化合物对苯二酚和甲醛为原料,通过缩聚反应、与氧化石墨烯原位复合、高温氮化制备了一类新型氮掺杂的碳纳米带固硫载体材料(NCNB-NG).通过NCNB-NG复合纳米硫进一步得到的碳-硫复合正极材料(S@NCNB-NG)表现出更优异的倍率性能和循环稳定性,这主要得益于该碳质载体独特的微结构以及改善的导电性.  相似文献   

18.
李西尧  赵长欣  李博权  黄佳琦  张强 《电化学》2022,28(12):2219013
锂硫电池因其超高的理论能量密度被视为极具前景的下一代电化学储能体系,其中高比容量的硫正极提供了锂硫电池的能量密度优势并直接决定了电池的实际性能。经过数十年的发展,最具前景的硫正极体系分别是硫碳复合(S/C)正极和硫化聚丙烯腈(SPAN)正极。本文系统综述了S/C正极和SPAN正极的最新研究进展。首先,简要介绍了两种正极的工作原理并进行了比较。S/C正极发生固-液-固多相转化反应,充放电表现为双平台特征。与之相比,SPAN正极发生固-固反应,充放电曲线为单平台。然后,对两种正极所面临的挑战和目前报道的优化策略进行了系统的分析与讨论。对于S/C正极,主要调控策略包括电极结构修饰、电催化剂设计与辅助氧化还原介体调控;对于SPAN正极,主要调控策略包括电极结构设计、电极形貌调控、杂原子掺杂和外源性氧化还原介体调控。最后,在电池尺度上对S/C正极和SPAN正极进行了综合比较,并对基于S/C正极和SPAN正极的锂硫电池在未来所面对的机遇与挑战进行了展望。  相似文献   

19.
近年来,有机硫化物因具有结构灵活、种类繁多、资源丰富和环境友好的特点而在储能领域得到广泛应用,并展示出较大的发展前景.有机硫化物在充放电过程中会发生硫-硫(S—S)键的可逆断裂和形成,分子中S—S键的数目决定了电子转移的多少,而有机基团可以影响电池的电化学行为.本文综合评述了有机硫化物在可充电电池中的研究进展,主要包括有机硫小分子和聚合物正极材料在可充电锂电池中的应用,有机硫电解液添加剂对锂-硫(Li-S)和锂-硒(Li-Se)电池性能的影响及有机硫材料在其它可充电电池中的应用等4个方面.这些结构可调的有机硫化物展示出优异的循环稳定性,改变了传统Li-S和Li-Se电池的氧化-还原路径,参与正负极固体电解质界面的形成,能抑制多硫化物的穿梭效应,阻止锂枝晶的生长.最后,讨论了有机硫化物在可充电电池领域未来研究发展中面临的挑战.  相似文献   

20.
锂硫电池具有理论能量密度高、活性物质价廉、毒性低等优点,是最具发展潜力的高能量二次电池之一,其应用仍存在硫面载量小、循环寿命短和库伦效率低等难题.制备了石墨烯包覆的硫填充碳纳米笼自支撑整体材料,可直接用作锂硫电池正极,避免使用粘结剂、导电剂和集流体,当硫的面载量为3.8 mg·cm-2时,锂硫电池展现出高的可逆比容量(1104 mAh·g-1)、优异的循环稳定性(每圈容量衰减率仅为0.049%@1.0 A·g-1)和>99.9%的库伦效率,其面积比容量(3.7 mAh·cm-2)处于锂硫电池的先进水平.该电极的优异性能可归因于以下因素的协同作用:碳纳米笼的物理限域作用及石墨烯中含氧官能团的化学吸附作用有效抑制了活性物质的流失,微孔-介孔-大孔共存的分级孔结构和高导电性利于离子和电子的传输,纳米笼空腔填充有利于缓解体积膨胀造成的影响,整体材料的自支撑稳定结构有利于增加硫载量且维持电化学性能.本研究还提供了一种工艺简单、能有效提高面积比容量的硫正极制备方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号