共查询到16条相似文献,搜索用时 62 毫秒
1.
金刚石是一种具有优异性能的极限性超硬多功能材料。人工合成的金刚石可通过掺杂的方式使其具有各种独特的性质。掺硼金刚石兼具p型半导体的导电特性和金刚石自身优良的物理和化学性能,在国防、医疗、勘探、科研等领域具有极高的应用价值。本文基于本课题组高温高压(HPHT)法合成的系列掺硼金刚石以及硼协同掺杂金刚石单晶,进行了硼掺杂金刚石、硼氢协同掺杂金刚石以及硼氮协同掺杂金刚石的合成和性能特征等方面的研究。通过表征合成样品在光学、电学方面的性能,探讨了不同掺杂添加剂对合成金刚石性能的影响,为合成高性能的半导体金刚石提供了思路。 相似文献
2.
突破高质量、高效金刚石掺杂技术是实现高性能金刚石功率电子器件的前提。本文利用微波等离子体化学气相沉积(MPCVD)法,以三甲基硼为掺杂源,制备出表面粗糙度0.35 nm,XRD(004)摇摆曲线半峰全宽28.4 arcsec,拉曼光谱半峰全宽3.05 cm-1的高质量硼掺杂单晶金刚石。通过改变气体组分中硼元素的含量,实现了1016~1020 cm-3的p型金刚石可控掺杂工艺。随后,研究了硼碳比、生长温度、甲烷浓度等工艺条件对p型金刚石电学特性的影响,结果表明:在硼碳比20×10-6、生长温度1 100 ℃、甲烷浓度8%、腔压160 mbar(1 mbar=100 Pa)时p型金刚石迁移率达到207 cm2/(V·s)。通过加氧生长可以提升硼掺杂金刚石结晶质量,降低杂质散射。当氧气浓度为0.8%时,样品空穴迁移率提升至 614 cm2/(V·s)。 相似文献
3.
本文通过温度梯度法在5.5 GPa和1 300℃的条件下合成了硼、氮共掺杂金刚石单晶。随后分别在5.0 GPa,2 000℃和2 100℃的条件下对合成金刚石进行了高温高压(HPHT)退火处理。傅里叶红外光谱(FT-IR)测试表明高温高压退火后晶体内部单一替代形式的C心氮转变成了聚集态A心氮,且随着退火温度的升高A心氮的含量提高。晶体内部带正电荷的氮离子N+的含量并未受到退火处理的影响。经过高温退火后晶体内部出现了NV0和NV-色心,但是继续提高退火温度时NV色心消失。高温高压退火并未对金刚石晶体的结构及内应力产生明显的影响。高温高压退火处理后金刚石晶体的热稳定性能提高,其起始氧化温度、剧烈氧化温度以及质量急剧减少的温度点分别提高了65℃、55℃以及61℃。本文对高温高压退火处理应用到硼、氮共掺杂金刚石提供了指导。 相似文献
4.
人造金刚石作为一种高效的热管理衬底,在宽禁带半导体电子器件领域具有广泛的应用前景。然而微波等离子体化学气相沉积(MPCVD)法外延金刚石单晶的生长速率慢,表面粗糙度高,难以满足半导体器件的衬底需求。对此,本文采用MPCVD法制备金刚石单晶薄膜,通过分阶段生长监控样品的生长速率,结合显微镜照片和AFM表征样品的表面形貌和表面粗糙度,根据拉曼光谱和XRD分析外延薄膜的晶体质量,最终采用高/低甲烷浓度的两步法外延工艺,实现了金刚石单晶薄膜的高速外延,生长速率达到20 μm/h,同时获得了较为平整的表面形貌。本文所研究的甲烷调制两步法外延工艺能够起到表面形貌优化的作用,有利于在后续的相关器件研发中提供平整的金刚石衬底,推动高功率电子器件的发展。 相似文献
5.
6.
大面积B掺杂CVD金刚石膜的制备研究 总被引:7,自引:0,他引:7
研究了采用B2O3作为掺杂源以EACVD法沉积大面积掺杂CVD金刚石膜,用SEM、Raman、二次离子质谱仪、四探针电阻仪等对B掺杂金刚石膜进行了分析.结果表明直径达100mm的大面积B掺杂金刚石膜的晶粒分布均匀,非金刚石碳含量较少,生长速率达到10μm/h以上;B掺杂改变了金刚石膜的成分和结构,高浓度掺杂可以细化晶粒,在高浓度掺杂的膜中存在一定的非晶态碳;金刚石膜中B的含量在一定范围内随着掺杂源浓度的增加而正比增加;金刚石膜的电阻率随着掺杂源B2O3的浓度的增加而下降,当掺杂达到一定浓度时,金刚石膜的电阻率逐渐趋向稳定. 相似文献
7.
8.
超宽禁带半导体材料金刚石在热导率、载流子迁移率和击穿场强等方面表现出优异的性质,在功率电子学领域具有广阔的应用前景。实现p型和n型导电是制备金刚石半导体器件的基础要求,其中p型金刚石的发展较为成熟,主流的掺杂元素是硼,但在高掺杂时存在空穴迁移率迅速下降的问题;n型金刚石目前主流的掺杂元素是磷,还存在杂质能级深、电离能较大的问题,以及掺杂之后金刚石晶体中的缺陷造成载流子浓度和迁移率都比较低,电阻率难以达到器件的要求。因此制备高质量的p型和n型金刚石成为研究者关注的焦点。本文主要介绍金刚石独特的物理性质,概述化学气相沉积法和离子注入法实现金刚石掺杂的基本原理和参数指标,进而回顾两种方法进行单晶金刚石薄膜p型和n型掺杂的研究进展,系统总结了其面临的问题并对未来方向进行了展望。 相似文献
9.
10.
金刚石以高导热率、强抗辐射性、高的电子迁移率等优异性能,成为辐射探测器最合适的材料之一。探测器级的金刚石要求具有极低的杂质含量及位错密度等,然而实际过程中同时实现杂质和位错的控制十分困难。本研究采用微波等离子体化学气相沉积(MPCVD)法,通过前期的参数优化,在最佳生长温度780℃、最佳甲烷浓度5%条件下,在两个高质量高温高压(HPHT)金刚石衬底样品上进行了MPCVD金刚石生长,并对衬底和生长层的氮杂质含量与缺陷结构进行了综合表征与分析。电子顺磁共振谱结果表明,相比两个HPHT衬底样品的氮杂质原子百分数分别为7.1×10-6%和4.04×10-6%,MPCVD生长层的氮杂质原子百分数明显减少,分别为2.1×10-7%和5×10-8%。由X射线摇摆曲线和白光形貌术测试结果发现,尽管MPCVD生长过程中引入了部分位错,使生长层应力增加,畸变区域较多,但总体位错与高质量衬底为同一数量级。本研究制备的高纯单晶金刚石有望应用于核辐射探测及半导体领域。 相似文献
11.
微波等离子体化学气相沉积(MPCVD)技术被认为是制备大尺寸高品质单晶金刚石的理想手段之一。然而其较低的生长速率(~10μm/h)以及较高的缺陷密度(103~107 cm-2)是阻碍MPCVD单晶金刚石应用的主要因素,经过国内外研究团队数十年的不懈努力,在高速率生长和高品质生长两个方面都取得了众多成果。但是除此之外还需解决高速率与高品质生长相统一的问题,才能实现MPCVD单晶金刚石的高端应用价值。 相似文献
12.
本文通过高分辨X射线衍射(HRXRD)、激光拉曼光谱(Raman)、晶格畸变检测等测试分析方法对多组高温高压(HTHP) Ⅰb、HTHP Ⅱa和化学气相沉积(CVD)型(100)面金刚石单晶样品进行对比研究。HRXRD和Raman的检测结果均表明HTHP Ⅱa型金刚石单晶的结晶质量接近天然金刚石,其XRD摇摆曲线半峰全宽和Raman半峰全宽分别为0.015°~0.018° 和1.45~1.85 cm-1。晶格畸变检测仪的检测结果表明,HTHP Ⅱa型金刚石单晶的应力分布主要有两种:一种几乎无明显应力分布,另一种沿<110>方向呈对称的放射状分布,其他区域无晶格畸变。HTHP Ⅰb和CVD型金刚石单晶应力分布均相对分散,晶格畸变复杂,与其HRXRD和Raman的检测结果相符。进一步利用等离子体刻蚀法对三种类型金刚石单晶(100)面位错缺陷进行对比分析,结果表明,HTHP Ⅱa型金刚石位错密度为三者中最低,仅为1×103 cm-2。本研究为制备高质量大尺寸CVD金刚石单晶的衬底选择提供了实验依据。 相似文献
13.
14.
铁基触媒中金刚石单晶的生长对初生渗碳体的消耗 总被引:7,自引:2,他引:5
利用扫描电子显微镜观察了不同合成时间的金刚石合成效果以及相应触媒的组织结构,结果表明:随着压力、温度的升高,铁基触媒全部熔化为液态后约20秒内,熔体对碳的溶解度可达到极大的过饱和程度,生成数量极大的初生渗碳体,同时,金刚石单晶在这种环境中生成。随着时间的延长,金刚石单晶长大、数量增多,熔体对碳的过饱和程度逐渐降低。触媒组织中的初生渗碳体量逐渐减少。分析表明:石墨碳与触媒首先发生冶金反应生成初生渗碳体,在高温高压作用下,初生渗碳体分解,碳原子脱溶,然后堆积到金刚石上。金刚石的生长通过对初生渗碳体的消耗得以进行。 相似文献
15.
利用扫描电子显微镜和能谱仪,研究了高温高压下金刚石单晶合成工艺参数对石墨-Ni70Mn25Co5体系中金属包膜组织形貌和成分的影响。结果发现:合成压力和合成温度都合适时,金属包膜中基本无条状石墨,而且包膜中间都存在网状物,包膜中存在着明显的碳、镍和锰的成分起伏;此时合成时间对包膜的形貌影响不明显;而合成压力为5.1GPa的包膜中存在大量条状石墨,包膜中间无网状物。分析认为,网状物为溶入了锰、钴的镍基γ固溶体,该固溶体是高温高压合成过程中促使金刚石转变的催化相。 相似文献
16.
本文研究了在反应气体中引入不同浓度的CO2对微波等离子体化学气相沉积(MPCVD)法同质外延生长单晶金刚石内应力的影响,并对其作用机理进行了分析。研究发现,随着CO2浓度增加,单晶金刚石内应力逐渐减小,这是由于添加的CO2提供了含氧基团,可以有效刻蚀金刚石生长过程中的非金刚石碳,并能够降低金刚石中杂质的含量,从而避免晶格畸变,减少生长缺陷,并最终表现为单晶金刚石内应力的减小,其中金刚石内应力以压应力的形式呈现。此外反应气体中加入CO2可以降低单晶金刚石的生长速率和沉积温度,且在合适的碳氢氧原子比(5∶112∶4)下能够得到杂质少、结晶度高的单晶金刚石。 相似文献