首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ramoplanin is a cyclicdepsipeptide antibiotic that inhibits peptidoglycan biosynthesis. It was proposed in 1990 to block the MurG step of peptidoglycan synthesis by binding to the substrate of MurG, Lipid I. The proposed mechanism of MurG inhibition has become widely accepted even though it was never directly tested. In this paper, we disprove the accepted mechanism for how ramoplanin functions, and we present an alternative mechanism. This work has implications for the design of ramoplanin derivatives and may influence how other proposed substrate binding antibiotics are studied.  相似文献   

2.
The peptide antibiotic ramoplanin is highly effective against several drug-resistant gram-positive bacteria, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), two important opportunistic human pathogens. Ramoplanin inhibits bacterial peptidoglycan (PG) biosynthesis by binding to Lipid intermediates I and II at a location different than the N-acyl-D-Ala-D-Ala dipeptide site targeted by vancomycin. Lipid I/II capture physically occludes these substrates from proper utilization by the late-stage PG biosynthesis enzymes MurG and the transglycosylases. Key structural features of ramoplanin responsible for antibiotic activity and PG molecular recognition have been discovered by antibiotic semisynthetic modification in conjunction with NMR analyses. These results help define a minimalist ramoplanin pharmacophore and introduce the possibility of generating ramoplanin-derived peptide or peptidomimetic antibiotics for use against VRE, MRSA, and related pathogens.  相似文献   

3.
4.
The peptidoglycan cell wall is essential for bacterial survival. To form the cell wall, peptidoglycan glycosyltransferases (PGTs) polymerize Lipid II to make glycan strands and then those strands are crosslinked by transpeptidases (TPs). Recently, the SEDS (for shape, elongation, division, and sporulation) proteins were identified as a new class of PGTs. The SEDS protein FtsW, which produces septal peptidoglycan during cell division, is an attractive target for novel antibiotics because it is essential in virtually all bacteria. Here, we developed a time-resolved Förster resonance energy transfer (TR-FRET) assay to monitor PGT activity and screened a Staphylococcus aureus lethal compound library for FtsW inhibitors. We identified a compound that inhibits S. aureus FtsW in vitro. Using a non-polymerizable Lipid II derivative, we showed that this compound competes with Lipid II for binding to FtsW. The assays described here will be useful for discovering and characterizing other PGT inhibitors.  相似文献   

5.
β‐Lactams represent one of the most important classes of antibiotics discovered to date. These agents block Lipid II processing and cell wall biosynthesis through inactivation of penicillin‐binding proteins (PBPs). PBPs enzymatically load cell wall building blocks from Lipid II carrier molecules onto the growing cell wall scaffold during growth and division. Lipid II, a bottleneck in cell wall biosynthesis, is the target of some of the most potent antibiotics in clinical use. Despite the immense therapeutic value of this biosynthetic pathway, the PBP–Lipid II association has not been established in live cells. To determine this key interaction, we designed an unnatural d ‐amino acid dipeptide that is metabolically incorporated into Lipid II molecules. By hijacking the peptidoglycan biosynthetic machinery, photoaffinity probes were installed in combination with click partners within Lipid II, thereby allowing, for the first time, demonstration of PBP interactions in vivo with Lipid II.  相似文献   

6.
The two-peptide lantibiotic haloduracin is composed of two post-translationally modified polycyclic peptides that synergistically act on gram-positive bacteria. We show here that Halα inhibits the transglycosylation reaction catalyzed by PBP1b by binding in a 2:1 stoichiometry to its substrate lipid II. Halβ and the mutant Halα-E22Q were not able to inhibit this step in peptidoglycan biosynthesis, but Halα with its leader peptide still attached was a potent inhibitor. Combined with previous findings, the data support a model in which a 1:2:2 lipid II:Halα:Halβ complex inhibits cell wall biosynthesis and mediates pore formation, resulting in loss of membrane potential and potassium efflux.  相似文献   

7.
In efforts that define the importance of each residue and that identify key regions of the molecule, an alanine scan of the ramoplanin A2 aglycon, a potent antibiotic that inhibits bacterial cell wall biosynthesis, is detailed. As a consequence of both its increased stability (lactam vs lactone) and its "relative" ease of synthesis, the alanine scan was conducted on [Dap2]ramoplanin A2 aglycon, which possesses antimicrobial activity equal to or slightly more potent than that of ramoplanin A2 or its aglycon. Thus, 14 key analogues of the ramoplanin A2 aglycon, representing a scan of residues 3-13, 15, and 17, were prepared enlisting a convergent solution-phase total synthesis that consolidated the effort to a manageable level. The antimicrobial activity of the resulting library of analogues provides insight into the importance and potential role of each residue of this complex glycopeptide antibiotic.  相似文献   

8.
BACKGROUND: The glycopeptide antibiotic vancomycin complexes DAla-DAla termini of bacterial cell walls and peptidoglycan precursors and interferes with enzymes involved in murein biosynthesis. Semisynthetic vancomycins incorporating hydrophobic sugar substituents exhibit efficacy against DAla-DLac-containing vancomycin-resistant enterococci, albeit by an undetermined mechanism. Contrasting models that invoke either cooperative dimerization and membrane anchoring or direct inhibition of bacterial transglycosylases have been proposed to explain the bioactivity of these glycopeptides. RESULTS: Affinity chromatography has revealed direct interactions between a semisynthetic hydrophobic vancomycin (DCB-PV), and select Escherichia coli membrane proteins, including at least six enzymes involved in peptidoglycan assembly. The N(4)-vancosamine substituent is critical for protein binding. DCB-PV inhibits transglycosylation in permeabilized E. coli, consistent with the observed binding of the PBP-1B transglycosylase-transpeptidase. CONCLUSIONS: Hydrophobic vancomycins interact directly with a select subset of bacterial membrane proteins, suggesting the existence of discrete protein targets. Transglycosylase inhibition may play a role in the enhanced bioactivity of semisynthetic glycopeptides.  相似文献   

9.
Each beta-protomer of the small betabeta subunit of Escherichia coli ribonucleotide reductase (R2) contains a binuclear iron cluster with inequivalent binding sites: Fe(A) and Fe(B). In anaerobic Fe(II) titrations of apoprotein under standard buffer conditions, we show that the majority of the protein binds only one Fe(II) atom per betabeta subunit. Additional iron occupation can be achieved upon exposure to O2 or in high glycerol buffers. The differential binding affinity of the A- and B-sites allows us to produce heterobinuclear Mn(II)Fe(II) and novel Mn(III)Fe(III) clusters within a single beta-protomer of R2. The oxidized species are produced with H2O2 addition. We demonstrate that no significant exchange of metal occurs between the A- and B-sites, and thus the binding of the first metal is under kinetic control, as has been suggested previously. The binding of first Fe(II) atom to the active site in a beta-protomer (betaI) induces a global protein conformational change that inhibits access of metal to the active site in the other beta-protomer (betaII). The binding of the same Fe(II) atom also induces a local effect at the active site in betaI-protomer, which lowers the affinity for metal in the A-site. The mixed metal FeMn species are quantitatively characterized with electron paramagnetic resonance spectroscopy. The previously reported catalase activity of Mn2(II)R2 is shown not to be associated with Mn.  相似文献   

10.
An essential feature in the life cycle of both gram positive and gram negative bacteria is the production of new cell wall. Also known as murein, the cell wall is a two-dimensional polymer, consisting of a linear, repeating N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) motif, cross-linked via peptides appended to MurNAc. The final steps in the maturation of murein are catalyzed by a single, bifunctional enzyme, known as a high MW, class A penicillin binding protein (PBP). PBPs catalyze polymerization of the sugar units (glycosyltransfer), as well as peptide cross-linking (transpeptidation) utilizing Lipid II as substrate. Detailed enzymology on this enzyme has been limited, due to difficulties in obtaining sufficient amounts of Lipid II, as well as the availability of a convenient and informative assay. We report the total chemical synthesis of Lipid II, as well as the development of an appropriate assay system and the observation of both catalytic transformations.  相似文献   

11.
Moenomycin A is the only known natural antibiotic that inhibits bacterial cell wall synthesis by binding to the transglycosylases that catalyze formation of the carbohydrate chains of peptidoglycan. We report here the total synthesis of moenomycin A using the sulfoxide glycosylation method. A newly discovered byproduct of sulfoxide reactions was isolated that resulted in substantial loss of the glycosyl acceptor. A general method to suppress this byproduct was introduced, which enabled the glycosylations to proceed efficiently. The inverse addition protocol for sulfoxide glycosylations also proved essential in constructing some of the glycosidic linkages. The synthetic route is flexible and will allow for derivatives to be constructed to further analyze moenomycin A's mechanism of action.  相似文献   

12.
Enduracidin and ramoplanin belong to the large family of cyclodepsipeptide antibiotics, highly effective against Gram-positive bacteria. The primary and 3D solution structure of ramoplanin is already well known, and the primary structure of enduracidin has been determined by a combination of chemical and NMR spectroscopic methods. Both antibiotics share a similar peptide core of 17 amino acids and differ mainly in the length of the acyl chain and the presence of two D-mannose moieties in ramoplanin. Based on the high sequence homology with ramoplanin, the structure in solution of enduracidin is modeled as a cyclic peptide. The tertiary structure thus obtained was refined through molecular dynamics (MD) simulation, in which the interatomic NOE-derived distance restraints were imposed. MD simulations yielded a family of representative 3D structures (RMSD = 0.89), which highlighted a backbone geometry similar to that of ramoplanin in its beta-hairpin arrangement. In contrast, enduracidin displays a different arrangement of the side-chain and of the residues forming the hydrophobic core.  相似文献   

13.
Moenomycin A is the only known natural product that inhibits peptidoglycan biosynthesis by binding the bacterial transglycosylases. We describe a degradation/reconstruction route to manipulate the reducing end of moenomycin A. A comparison of the biological and enzyme inhibitory activity of moenomycin A and an analogue containing a nerol lipid in place of the natural C25 lipid chain provides insight into the role of the moenocinol unit. Our results show that a lipid chain having ten carbons in moenocinol is sufficient for enzyme inhibition, but a longer chain is required for biological acitivity, apparently because the molecule must partition into biological membranes to reach its target in bacterial cells.  相似文献   

14.
The glycopeptide antibiotics prevent maturation of the bacterial cell wall by binding to the terminal d-alanyl-d-alanine moiety of peptidoglycan precursors, thereby inhibiting the enzymes involved in the final stages of peptidoglycan synthesis. However, there are significant differences in the biological activity of particular glycopeptide derivatives that are not related to their affinity for d-Ala-d-Ala. We compare the ability of vancomycin and a set of clinically relevant glycopeptides to inhibit Staphylococcus aureus PBP2 (penicillin binding protein), the major transglycosylase in a clinically relevant pathogen, S. aureus. We report experiments suggesting that activity differences between glycopeptides against this organism reflect a combination of substrate binding and secondary interactions with key enzymes involved in peptidoglycan synthesis.  相似文献   

15.
Shih HW  Chen KT  Cheng TJ  Wong CH  Cheng WC 《Organic letters》2011,13(17):4600-4603
A new synthetic approach toward the bacterial transglycosylase substrates, Lipid II (1) and Lipid IV (2), is described. The key disaccharide was synthesized using the concept of relative reactivity value (RRV) and elaborated to Lipid II and Lipid IV by conjugation with the appropriate oligopeptides and pyrophosphate lipids. Interestingly, the results from our HPLC-based functional TGase assay suggested Lipid IV has a higher affinity for the enzyme than Lipid II.  相似文献   

16.
The formation of mixed copper(II) and zinc(II) complexes with Aβ(1-16)-PEG has been investigated. The peptide fragment forms stable mixed metal complexes at physiological pH in which the His13/His14 dyad is the zinc(II)'s preferred binding site, while copper(II) coordination occurs at the N-terminus also involving the His6 imidazole. Copper(II) is prevented by zinc(II) excess from the binding to the two His residues, His13 and His14. As the latter binding mode has been recently invoked to explain the redox activity of the copper-Aβ complex, the formation of ternary metal complexes may justify the recently proposed protective role of zinc(II) in Alzheimer's disease. Therefore, the reported results suggest that zinc(II) competes with copper for Aβ binding and inhibits copper-mediated Aβ redox chemistry.  相似文献   

17.
The emergence of antibiotic resistance has prompted active research in the development of antibiotics with new modes of action. Among all essential bacterial proteins, transglycosylase polymerizes lipid II into peptidoglycan and is one of the most favorable targets because of its vital role in peptidoglycan synthesis. Described in this study is a practical enzymatic method for the synthesis of lipid II, coupled with cofactor regeneration, to give the product in a 50–70 % yield. This development depends on two key steps: the overexpression of MraY for the synthesis of lipid I and the use of undecaprenol kinase for the preparation of polyprenol phosphates. This method was further applied to the synthesis of lipid II analogues. It was found that MraY and undecaprenol kinase can accept a wide range of lipids containing various lengths and configurations. The activity of lipid II analogues for bacterial transglycolase was also evaluated.  相似文献   

18.
Vancomycin‐resistant Staphylococcus aureus (S. aureus) (VRSA) uses depsipeptide‐containing modified cell‐wall precursors for the biosynthesis of peptidoglycan. Transglycosylase is responsible for the polymerization of the peptidoglycan, and the penicillin‐binding protein 2 (PBP2) plays a major role in the polymerization among several transglycosylases of wild‐type S. aureus. However, it is unclear whether VRSA processes the depsipeptide‐containing peptidoglycan precursor by using PBP2. Here, we describe the total synthesis of depsi‐lipid I, a cell‐wall precursor of VRSA. By using this chemistry, we prepared a depsi‐lipid II analogue as substrate for a cell‐free transglycosylation system. The reconstituted system revealed that the PBP2 of S. aureus is able to process a depsi‐lipid II intermediate as efficiently as its normal substrate. Moreover, the system was successfully used to demonstrate the difference in the mode of action of the two antibiotics moenomycin and vancomycin.  相似文献   

19.
The promising BioDeNO(x) process for NO removal from gaseous effluents suffers from an unsolved problem that results from the oxygen sensitivity of the Fe(II)-aminopolycarboxylate complexes used in the absorber unit to bind NO(g). The utilized [Fe(II)(EDTA)(H2O)](2-) complex is extremely oxygen sensitive and easily oxidized to give a totally inactive [Fe(III)(EDTA)(H2O)](-) species toward the binding of NO(g). We found that an in situ formed, less-oxygen-sensitive mixed-ligand complex, [Fe(II)(EDTA)(F)](3-), still reacts quantitatively with NO(g). The formation constant for the mixed ligand complex was determined spectrophotometrically. For [Fe(III)(EDTA)(F)](2-) we found log K(MLF)(F) = 1.7 +/- 0.1. The [Fe(II)(EDTA)(F)](3-) complex has a smaller value of log K(MLF)(F) = 1.3 +/- 0.2. The presence of fluoride does not affect the reversible binding of NO(g). Even over extended periods of time and fluoride concentrations of up to 1.0 M, the nitrosyl complex does not undergo any significant decomposition. The [Fe(III)(EDTA)(NO(-))](2-) complex releases bound NO on passing nitrogen through the solution to form [Fe(II)(EDTA)(H2O)](2-) almost completely. A reaction cycle is feasible in which fluoride inhibits the autoxidation of [Fe(II)(EDTA)(H2O)](2-) during the reversible binding of NO(g).  相似文献   

20.
Prion diseases are a group of neurodegenerative diseases based on the conformational conversion of the normal form of the prion protein (PrPC) to the disease‐related scrapie isoform (PrPSc). Copper(II) coordination to PrPC has attracted considerable interest for almost 20 years, mainly due to the possibility that such an interaction would be an important event for the physiological function of PrPC. In this work, we report the copper(II) coordination features of the peptide fragment Ac(PEG11)3PrP(60‐114) [Ac=acetyl] as a model for the whole N‐terminus of the PrPC metal‐binding domain. We studied the complexation properties of the peptide by means of potentiometric, UV/Vis, circular dichroism and electrospray ionisation mass spectrometry techniques. The results revealed that the preferred histidyl binding sites largely depend on the pH and copper(II)/peptide ratio. Formation of macrochelate species occurs up to a 2:1 metal/peptide ratio in the physiological pH range and simultaneously involves the histidyl residues present both inside and outside the octarepeat domain. However, at increased copper(II)/peptide ratios amide‐bound species form, especially within the octarepeat domain. On the contrary, at basic pH the amide‐bound species predominate at any copper/peptide ratio and are formed preferably with the binding sites of His96 and His111, which is similar to the metal‐binding‐affinity order observed in our previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号