首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A comparison of HSQC and HMQC pulse schemes for recording (1)H[bond](13)C correlation maps of protonated methyl groups in highly deuterated proteins is presented. It is shown that HMQC correlation maps can be as much as a factor of 3 more sensitive than their HSQC counterparts and that the sensitivity gains result from a TROSY effect that involves cancellation of intra-methyl dipolar relaxation interactions. (1)H[bond](13)C correlation spectra are recorded on U-[(15)N,(2)H], Ile delta 1-[(13)C,(1)H] samples of (i) malate synthase G, a 723 residue protein, at 37 and 5 degrees C, and of (ii) the protease ClpP, comprising 14 identical subunits, each with 193 residues (305 kDa), at 5 degrees C. The high quality of HMQC spectra obtained in short measuring times strongly suggests that methyl groups will be useful probes of structure and dynamics in supramolecular complexes.  相似文献   

2.
A new CPMG-based multiple quantum relaxation dispersion experiment is presented for measuring millisecond dynamic processes at side-chain methyl positions in high molecular weight proteins. The experiment benefits from a methyl-TROSY effect in which cancellation of intramethyl dipole fields occurs, leading to methyl (13)C-(1)H correlation spectra of high sensitivity and resolution (Tugarinov, V.; Hwang, P. M.; Ollerenshaw, J. E.; Kay, L. E. J. Am. Chem. Soc. 2003, 125, 10420-10428). The utility of the methodology is illustrated with an application to a highly deuterated, methyl-protonated sample of malate synthase G, an 82 kDa enzyme consisting of a single polypeptide chain. A comparison of the sensitivity obtained using the present approach relative to existing HSQC-type (13)C single quantum dispersion experiments shows a gain of a factor of 5.4 on average, significantly increasing the range of applications for this methodology.  相似文献   

3.
New NMR experiments are presented for the assignment of methyl (13)C and (1)H chemical shifts from Ile, Leu, and Val residues in high molecular weight proteins. The first class of pulse schemes transfers magnetization from the methyl group to the backbone amide spins for detection, while the second more sensitive class uses an "out-and-back" transfer scheme in which side-chain carbons or backbone carbonyls are correlated with methyl (13)C and (1)H spins. Both groups of experiments benefit from a new isotopic labeling scheme for protonation of Leu and Val methyl groups in large deuterated proteins. The approach makes use of alpha-ketoisovalerate that is (13)C-labeled and protonated in one of its methyl groups ((13)CH(3)), while the other methyl is (12)CD(3). The use of this biosynthetic precursor leads to production of Leu and Val residues that are (13)CH(3)-labeled at only a single methyl position. Although this labeling pattern effectively reduces by 2-fold the concentration of Leu and Val methyls in NMR samples, it ensures linearity of Val and Leu side-chain (13)C spin-systems, leading to higher sensitivity and, for certain classes of experiments, substantial simplification of NMR spectra. Very near complete assignments of the 276 Ile (delta 1 only), Leu, and Val methyl groups in the single-chain 723-residue enzyme malate synthase G (MSG, molecular tumbling time 37 +/- 2 ns at 37 degrees C) have been obtained using the proposed isotopic labeling strategy in combination with the new NMR experiments.  相似文献   

4.
New NMR experiments for the measurement of side-chain dynamics in high molecular weight ( approximately 100 kDa) proteins are presented. The experiments quantify (2)H spin relaxation rates in (13)CH(2)D or (13)CHD(2) methyl isotopomers and, for applications to large systems, offer significant gains both in sensitivity (2-3-fold) and resolution over previously published HSQC schemes. The methodology has been applied to investigate Ile dynamics in the 723-residue, single polypeptide chain enzyme, malate synthase G. Methyl-axis order parameters, S(axis), characterizing the amplitudes of motion of the methyl groups, have been derived from both (13)CH(2)D and (13)CHD(2) probes and are in excellent agreement. The distribution of order parameters is trimodal, reflecting the range of dynamics that are available to Ile residues. A reasonable correlation is noted between and inverse temperature factors from X-ray studies of the enzyme. The proposed methodology significantly extends the range of protein systems for which side-chain dynamics can be studied.  相似文献   

5.
A new 3D multiple-quantum (H)CCmHm-TOCSY experiment is proposed to assign methyl resonances in high-molecular weight proteins, on the basis of spectral patterns and prior backbone assignments. The favorable relaxation properties of the multiple-quantum coherences and the slow decays of in-phase methyl 13C magnetizations optimize performance of the proposed experiment for application to large proteins. The experiment has been demonstrated on an acyl carrier protein synthase (trimer, 42 kDa, overall correlation time of 26 ns) at 25 degrees C, and 63 out of 67 nonmethionine methyl groups have been assigned.  相似文献   

6.
An NMR experiment is presented for the measurement of the time scale of methyl side-chain dynamics in proteins that are labeled with methyl groups of the (13)CHD(2) variety. The measurement is accomplished by selecting a magnetization mode that to excellent approximation relaxes in a single-exponential manner with a T(1)-like rate. The combination of R(1)((13)CHD(2)) and R(2)((13)CHD(2)) (2)H relaxation rates facilitates the extraction of motional parameters from (13)CHD(2)-labeled proteins exclusively. The utility of the methodology is demonstrated with applications to proteins with tumbling times ranging from 2 ns (protein L, 7.5 kDa, 45 degrees C) to 54 ns (malate synthase G, 82 kDa, 37 degrees C); dynamics parameters are shown to be in excellent agreement with those obtained in (2)H NMR studies of other methyl isotopomers. A consistency relationship is found to exist between R(1)((13)CHD(2)) and the relaxation rates of pure longitudinal and quadrupolar order modes in (13)CH(2)D-labeled methyl groups, and experimental rates measured for a number of proteins are shown to be in excellent agreement with expectations based on theory. The present methodology extends the applicability of (2)H relaxation methods for the quantification of side-chain dynamics in high molecular weight proteins.  相似文献   

7.
A sensitive 3D NMR pulse scheme, (H)C(CA)NH-COSY, is presented for the assignment of (13)C(delta)(1) Ile chemical shifts in large perdeuterated, methyl-protonated proteins. The nonlinearity of branched amino acids, such as Ile, significantly degrades the quality of TOCSY schemes which transfer magnetization from methyl carbons to the backbone (13)C(alpha) positions, and in applications to high molecular weight proteins (correlation times on the order of 40-50 ns), this compromises the sensitivity of spectra used for methyl assignment. The experiment presented utilizes COSY-based transfer steps and refocuses undesirable (13)C-(13)C scalar couplings that degrade the efficiency of TOCSY transfers. The (H)C(CA)NH-COSY scheme is tested on an (15)N,(13)C,(2)H-[Leu, Val, Ile (delta 1 only)]-methyl-protonated maltose binding protein (MBP)/beta-cyclodextrin complex at 5 degrees C (molecular tumbling time 46 +/- 2 ns), facilitating the assignment of (13)C(delta 1) chemical shifts for 18 of the 19 Ile residues for which backbone assignments were previously obtained. Both sensitivity and resolution of the resulting spectra are shown to be significantly better than those for a similar TOCSY-based approach.  相似文献   

8.
We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei ((13)C-(13)C, (15)N-(15)N, (15)N-(13)C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U-[(15)N, (13)C]-YajG) at high magnetic fields (up to 900 MHz (1)H frequency) and fast sample spinning (up to 65 kHz MAS frequency).  相似文献   

9.
A thermostable D-hydantoinase was isolated from thermophilic Bacillus thermocatenulatus GH-2 and purified to homogeneity by using immunoaffinity chromatography. The molecular mass of the enzyme was determined to be about 230 kDa, and a value of 56 kDa was obtained as a molecular mass of the subunit on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, implying that oligomeric structure of the enzyme is tetrameric. Isoelectric pH of the enzyme was found to be approx 4.3. The enzyme required Mn2+ for the activity and exhibited its highest activity with phenylhydantoin as a substrate. The optimal pH and temperature for catalytic activity were about 7.5 and 65 degrees C, respectively. The half-life of the enzyme was estimated to be about 45 min at 80 degrees C.  相似文献   

10.
A cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19) from a newly isolated alkalophilic and moderately thermophilic Paenibacillus campinasensis strain H69-3 was purified as a homogeneous protein from culture supernatant. Cyclomaltodextrin glucanotransferase was produced during submerged fermentation at 45 degrees C and purified by gel filtration on Sephadex G50 ion exchange using a Q-Sepharose column and ion exchange using a Mono-Q column. The molecular weight of the purified enzyme was 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the pI was 5.3. The optimum pH for enzyme activity was 6.5, and it was stable in the pH range 6.0-11.5. The optimum temperature was 65 degrees C at pH 6.5, and it was thermally stable up to 60 degrees C without substrate during 1 h in the presence of 10 mM CaCl(2). The enzyme activity increased in the presence of Co(2+), Ba(2+), and Mn(2+). Using maltodextrin as substrate, the K(m) and K(cat) were 1.65 mg/mL and 347.9 micromol/mg x min, respectively.  相似文献   

11.
A pair of experiments is presented for measuring intra-methyl 1H-1H dipolar cross-correlated spin relaxation rates in highly deuterated, methyl protonated proteins with significantly improved sensitivity relative to previously developed experiments that measure dynamics via 1H spin relaxation. In applications to proteins with correlation times in the macromolecular limit, these cross-correlation rates are related directly to order parameters, characterizing the amplitude of motion of methyl-containing side-chains. The experimental approach is validated by comparing extracted order parameters with those obtained via 2H and 13C spin relaxation methods for both protein L (7.5 kDa) and malate synthase G (82 kDa), with excellent correlations obtained. The methodology is applied to study Ile, Leu, and Val side-chain dynamics in a 360 kDa "half-proteasome" complex. In particular, order parameters obtained from the WT complex and from a second complex where the proteasome gating residues are deleted establish that the relative levels of dynamics in each of the two molecules are very similar. It thus becomes clear that there is no communication between gating residues and other regions of the molecule involving pico- to nanosecond time-scale dynamics of these methyl-containing side-chains.  相似文献   

12.
The methionine aminopeptidase (MetAP) catalyzes the removal of amino terminal methionine from newly synthesized polypeptide. MetAP from Mycobacterium smegmatis mc(2) 155 was purified from the culture lysate in four sequential steps to obtain a final purification fold of 22. The purified enzyme exhibited a molecular weight of approximately 37 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Activity staining was performed to detect the methionine aminopeptidase activity on native polyacrylamide gel. The enzyme was characterized biochemically, using L-methionine p-nitroanilide as substrate. The enzyme was found to have a temperature and pH optimum of 50 degrees C and 8.5, respectively, and was found to be stable at 50 degrees C with half-life more than 8 h. The enzyme activity was enhanced by Mg(2+) and Co(2+) and was inhibited by Fe(2+) and Cu(2+). The enzyme activity inhibited by EDTA is restored in presence of Mg(2+) suggesting the possible role of Mg(2+) as metal cofactor of the enzyme in vitro.  相似文献   

13.
Battaglia G  Crea F  Crea P  Silvio S 《Annali di chimica》2005,95(9-10):643-656
The protonation of polyacrylate (PAA, MW 2 kDa) was studied potentiometrically at 25 degrees C, in mixed electrolyte aqueous solution simulating the composition of seawater, in the salinity range 30 < or = S < or = 40. The salt composition of different solutions was varied in order to study its effect on apparent protonation constants. Results were analysed using two fairly different approaches: by simple regression analysis on a combination of concentration parameters and salinity, and by canonical correlation analysis. Unexpectedly we found that variations on protonation constants, due to the different relative component concentrations, are fairly low, revealing a sort of buffering capacity of seawater respect to protonation properties of polyacrylate (and likely for other HMW and LMW polycarboxylates). The intrinsic protonation constant of polyacrylate 2 kDa at 25 degrees C and 35 salinity is log K(H*) = log K(int) = 4.399 +/- 0.004. The use of different pH scales and standard seawater compositions is also discussed.  相似文献   

14.
Two endoglucanases (EGs), EG A and EG B, were purified to homogeneity from Penicillium occitanis mutant Pol 6 culture medium. The molecular weights of EG A and EG B were 31,000 and 28,000 kDa, respectively. The pI was about 3 for EG A and 7.5 for EG B. Optimal activity was obtained at pH 3.5 for both endoglucanases. Optimal temperature for enzyme activity was 60 degrees C for EG A and 50 degrees C for EG B. EG A was thermostable at 60 degrees C and remained active after 1 h at 70 degrees C. EGs hydrolyzed carboxymethylcellulose, phosphoric acid swollen cellulose, and beta-glucan efficiently, whereas microcrystalline cellulose (Avicel) and laminarin were poorly hydrolyzed. Only EG B showed xylanase activity. Furthermore, these EGs were insensitive to the action of glucose and cellobiose but were inhibited by the divalent cations Hg2+, Co2+, and Mn2+.  相似文献   

15.
A new lipase from seeds of Pachira aquatica was purified to homogeneity by SDS-PAGE obtaining an enzyme with a molecular weight of approximately 55 kDa. The purified lipase exhibited maximum activity at 40 degrees C and pH 8.0, for an incubation time of 90 min. Concerning temperature stability, at the range from 4 to 50 degrees C, it retained approximately 47% of its original activity for 3 h. The enzyme activity increased in the presence of Ca(++) and Mg(++), but was inhibited by Hg(++), Mn(++), Zn(++), Al(+++) and various oxidizing and reducing agents. The lipase was highly stable in the presence of organic solvents, and its activity was stimulated by methanol. The values of K(m) and V(max) were 1.65 mM and 37.3 micromol mL(-1) min(-1), respectively, using p-nitrophenylacetate as substrate. The enzyme showed preference for esters of long-chain fatty acids, but demonstrated significant activity against a wide range of substrates.  相似文献   

16.
TROSY-based NMR relaxation dispersion experiments that measure the decay of double- and zero-quantum (1)H-(15)N coherences as a function of applied (1)H and (15)N radio frequency (rf) fields are presented for studying millisecond dynamic processes in proteins. These experiments are complementary to existing approaches that measure dispersions of single-quantum (15)N and (1)H magnetization. When combined, data from all four coherences provide a more quantitative picture of dynamics, making it possible to distinguish, for example, between two-site and more complex exchange processes. In addition, a TROSY-based pulse scheme is described for measuring the relaxation of amide (1)H single-quantum magnetization, obtained by a simple modification of the multiple-quantum experiments. The new methodology is applied to a point mutant of the Fyn SH3 domain that exchanges between folded and unfolded states at 25 degrees C.  相似文献   

17.
18.
Sequential assignment of backbone resonances in larger proteins can be achieved by recording two or more complementary triple-resonance NMR spectra of deuterated proteins. For such proteins, higher fields and experiments based on the TROSY method provide the needed resolution and sensitivity. However, increasingly rapid carbonyl relaxation at the high magnetic field strengths required by TROSY techniques renders assignment strategies that rely on sequential HN(CO)CA-type experiments much less efficient for proteins >40 kDa. Here we present two complementary new experiments, which allow backbone assignments with good sensitivity for larger deuterated proteins. A 3D intra-HNCA experiment provides uniquely the intraresidue connection, while a 3D DQ-HNCA experiment, which detects a (13)C(alpha)(i)()(13)C(alpha)(i-1)() double-quantum (DQ) coherence, contains the sequential information. The experiments work well at high magnetic fields, and their utility is demonstrated on a protein with a correlation time of 28 ns ( approximately 60 kDa). For larger proteins the sensitivity is predicted through simulations which suggest that the approach should work for proteins with correlation times >50 ns.  相似文献   

19.
Analysis of peroxidase activity by native polyacrylamide gel electrophoresis (PAGE) from a garlic bulb (Allium sativum L) extract showed two major activities (designated POX1 and POX2). The POX2 isoenzyme was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and cation-exchange chromatography. The purified enzyme was found to be monomeric with a molecular mass of 36.5 kDa, as determined by sodium dodecyl sulfate-PAGE. The optimum temperature ranged from 25 to 40 degrees C and optimum pH was about 5.0. The apparent Km values for guaiacol and H2O2 were 9.5 and 2 mM, respectively. POX2 appeared highly stable since 50% of its activity was conserved at 50 degrees C for 5 h. Moreover POX2 was stable over a pH range of 3.5-11.0. Immobilization of POX2 was achieved by covalent binding of the enzyme to an epoxy-Sepharose matrix. The immobilized enzyme showed great stability toward heat and storage when compared with soluble enzyme. These properties permit the use of this enzyme as a biosensor to detect H2O2 in some food components such as milk or its derivatives.  相似文献   

20.
Surface structure relaxations caused by temperature changes at the free surface of poly(methyl methacrylate) were studied using IR-visible sum-frequency generation (SFG). A polarization-rotating technique was introduced to enhance the sensitivity of SFG for monitoring the surface structure relaxations during a cooling process. A new surface structure relaxation was observed at 67 degrees C. This temperature does not match any known structure relaxation temperatures for the bulk and is 40 degrees C below the bulk glass transition temperature. As expected for a free-surface phenomenon, the surface relaxation temperature was found to be independent of film thickness in the range of 0.1-0.5 microm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号