首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review article, the development of the double cladding optical fiber for high power fiber lasers is reviewed. The main technology for high power fiber lasers, including laser diode beam shaping, fiber laser pumping techniques, and amplification systems, are discussed in detail. 1050 W CW output and 133 W pulsed output are obtained in Shanghai Institute of Optics and Fine Mechanics, China. Finally, the applications of fiber lasers in industry are also reviewed.   相似文献   

2.
马骁宇  张娜玲  仲莉  刘素平  井红旗 《强激光与粒子束》2020,32(12):121010-1-121010-10
高功率半导体激光器是固体激光器和光纤激光器的主要泵浦源。激光泵浦源性能的大幅提升直接促进了固体激光器、光纤激光器等激光器的发展。主要介绍了8xx nm和9xx nm系列半导体激光泵浦源的最新研究进展,8xx nm单管输出功率已达18.8 W@95μm,巴条输出功率已达1.8 kW(QCW),9xx nm单管输出功率已达35 W@100μm,巴条输出功率已达1.98 kW(QCW)。谱宽<1 nm的窄谱宽半导体激光器输出功率可达14 W。展望了未来半导体激光器泵浦源的发展趋势。  相似文献   

3.
A high efficient LD (laser diode) pumped Tm3+ doped double clad silica fiber laser with an intravacity biconical taper was reported. A biconical taper located ~3 cm from the output end of the fiber laser was fabricated by heating and stretching method with a length 1.5 cm and waist diameter ~20 µm. The slope efficiency was 49.8% with respected to the launched pump power, and the maximum output power was 1.97 W. Pre and post output laser power ratio was ~10. This fiber laser was compared with other three biconical tapered fiber lasers (the same fiber with different tapers) and a uniform geometry fiber laser. With intracavity biconical tapers, fiber lasers’ thresholds were ~1 W higher than the fiber laser without the taper (1.97 W). The pump end’s slope efficiencies of fiber lasers with tapers were 3–5% in contrast with 37.6% of the uniform one. After tapered, the pre and post laser power ratios were much higher than the un-tapered one’s, but not changed much with the launched pump power.  相似文献   

4.
搭建了两台高功率、低量子损耗的1018 nm短波长掺镱光纤激光器,进行了全光纤结构下两路光纤激光器的相干合成实验。获得了功率为55 W、合成效率为90.2%的相干输出,这是当前严格单模1018 nm光纤激光器的最高功率水平。同时,验证了Michelson腔自组织相干合成技术能够实现光纤激光器的高功率单模输出。  相似文献   

5.
对强泵浦下线形腔掺Yb3+双包层光纤激光器输出特性进行了理论和实验研究。通过数值模拟,分析了泵浦光及激光在光纤中的分布、输出功率与泵浦功率的关系、光纤长度及腔镜反射率对激光输出功率的影响。在实验中,利用D型掺Yb3+双包层光纤获得了输出功率10 6W的光纤激光输出,斜率效率达86%。测量了在不同输出耦合条件下的输出功率、阈值泵浦功率和斜率效率,理论分析与实验结果基本一致,为进一步提高光纤激光器功率提供了理论和实验依据。  相似文献   

6.
Cieslak R  Clarkson WA 《Optics letters》2011,36(10):1896-1898
In this Letter we describe a simple method for frequency doubling in high-power CW fiber lasers that offers the prospect of very high conversion efficiency and high power in the visible wavelength regime. Our approach is based on second harmonic generation in an enhancement resonator within the fiber laser cavity and does not require active cavity length stabilization. This technique has been applied to a cladding-pumped Yb-doped fiber laser to generate 19 W of linearly polarized CW green output at 540 nm, with excellent temporal stability for 90 W of absorbed diode pump power at 975 nm. The prospects for further improvement in performance with respect to conversion efficiency and output power are considered.  相似文献   

7.
Zhu X  Jain R 《Optics letters》2007,32(1):26-28
We report on >9W transverse-fundamental-mode CW output near 3 mum from a 4m heavily erbium-doped ZBLAN double-clad fiber laser pumped by a collimated 100 W 975 nm laser diode array. The pump threshold of the fiber laser was about 1W, and the slope efficiency was 21.3%. The peak wavelength of free running was about 2708 nm at low pump power and moved to around 2785 nm at high pump power. Output of 9W was obtained when the launched pump power was 42.8W. The output, however, fluctuated intensively like a pulsed laser, and the operation broke down with optical damage of the pumping end facet when the pump was increased beyond 42.8 W. Therefore, alleviation of the operation fluctuation, heat management, and strengthening the pumping fiber are crucial considerations for the stable operation of 10-W-level mid-IR ZBLAN fiber lasers.  相似文献   

8.
利用大模场掺镱光纤搭建了1018nm高功率光纤激光器,获得了476 W的最高输出功率。利用6台高亮度1018nm光纤激光器泵浦掺镱光纤,搭建了全光纤结构的级联泵浦光纤放大器,实现了2.14kW的最高输出功率,输出功率随泵浦功率线性增长,整体斜率效率为86.9%,M2因子为1.9。  相似文献   

9.
通过对连续种子光源的光强调制,并利用光纤放大器和固体介质放大器结合的混合放大方式,实现了百兆赫兹高重频可调谐单频激光光源。系统在基模输出条件下的最大输出功率为31.9 W,光束质量因子小于1.5,脉冲重复频率达到100 MHz,脉宽1 ns,测量得到的光束线宽小于0.8 GHz。实验结果验证了通过对连续光源进行光强调制获得高重频脉冲光源的可行性,并验证了混合放大方式是获得功率放大的一种有效手段。  相似文献   

10.
 对掺Yb3+双包层光纤激光器不同参数情况下的输出功率和增益分布进行了数值模拟,分析了一端泵浦和双端泵浦方式下输出特性的差异,激光沿光纤长度方向的分布,输出功率与光纤长度、腔镜反射率及泵浦功率的关系。结果显示:两端泵浦较一端泵浦增益更加平坦,输出功率也稍高;当泵浦光波长为975nm时,输出激光功率对光纤长度更为敏感,最佳光纤长度相对于泵浦光波长为915nm时短且转化效率高;在大功率长光纤的情况下,光纤有损耗时输出功率随输出腔镜反射率的增加单调地减小,无损耗时输出功率不随输出腔镜反射率变化。  相似文献   

11.
A high efficiency 7 × 1 multimode fiber coupler using the method of fusion and tapering is reported. This coupler can be applied to combine laser power, ad it can be used as a 1 × 7 splitter with reversible simultaneously. In the experiment, for combiner, coupling output power of 1032 W is obtained with the input power of 1066 W. The total coupling efficiency is 96.8%. The average insertion loss of each input fiber is 0.14 dB at ∼150 W input power. To splitter, the sum of 7 output ports power is 294 W with the input power of 341 W, and the insertion loss is about 13.8%. This fiber coupler can be applied in pumping all-fiber double clad fiber laser, as well as power combination and splitting of fiber lasers.  相似文献   

12.
The resonance wavelength of the fiber Bragg gratings (FBGs) is tuned using two methods. Tunable FBGs are used as the selecting elements in the cavities of tunable lasers. An ytterbium-doped fiber laser with a wavelength tuning range of 1063–1108 nm and an output power of 6 W, a Raman fiber laser with a wavelength tuning range of 1252–1303 nm and an output power of 3 W, and an erbium-doped fiber laser with a wavelength tuning range of 1530–1580 nm are realized, and their characteristics are studied.  相似文献   

13.
High-power operation of diode-pumped fiber lasers at wavelength near 2μm are demonstrated with short length of heavily Tm3 -doped silica glass fibers. With 7-cm long fiber, a laser at near 2 μm is obtained with the threshold of 135 mW, maximum output power of 1.09 W, and slope efficiency of 9.6% with respect to the launched power from a laser diode at 790 nm. The output stability of this fiber laser is within 5%.The dependence of the performance of fiber lasers on the operation temperature and cavity configuration parameters is also investigated.  相似文献   

14.
随着单管半导体激光器光纤耦合技术的不断发展,为了进一步提高多单管半导体激光器的输出功率,本文采用曲面空间排列方式对多个单管半导体激光器进行合束研究,使更多数量的单管半导体激光器耦合进入同一光纤中,获得更高的输出功率。文中利用ZEMAX光学设计软件进行仿真模拟,将34只波长为975 nm、输出功率为10 W的单管半导体激光器合束聚焦后耦合进芯径200 μm、数值孔径0.22的光纤中,获得耦合效率91.76%、输出功率312.03 W的激光系统。实验中,将17只单管半导体激光器耦合进芯径200 μm、数值孔径0.22的光纤中,在10.5 A的驱动电流下,输出功率为100.5 W,系统耦合效率为68.46%。  相似文献   

15.
双端泵浦保偏光纤激光器   总被引:1,自引:1,他引:0       下载免费PDF全文
 以两台808 nm半导体激光器LD1和LD2为泵浦源,对光纤激光器双端泵浦进行了研究,获得了6.5 W的激光输出。实验分别测出了LD1和LD2半导体激光器单端泵浦和双端泵浦时的输出功率,对双端泵浦输出功率与单端泵浦功率之和进行了比较,利用双端泵浦提高了泵浦效率和输出激光功率。同时测量了输出激光的偏振度,通过计算得到双端泵浦输出激光的偏振度为0.5。  相似文献   

16.
Efficiencies improvement of LD (laser diode) pumped multimode large mode area (LMA) Tm3+ doped double cladding silica fiber lasers with different in-line biconial tapers were reported. Two types of multimode Tm3+ doped fiber were used in this experiment. Each type of fiber was made into three fiber lasers, a uniform geometry fiber laser and two tapered fiber lasers with different taper parameters. Biconical tapers located several centimeters from the output end of the multimode fiber lasers were made by heating and stretching method. Although the threshold of the best tapered fiber laser was added 200 mW, the slope efficiency (25.3%) and the maximum output power (1.31 W) of the fiber laser increased by 10.3% and 350 mW respectively, in comparison with the un-tapered one. Pre and post output laser power ratio was 6.3–15.6. Simultaneously, the laser spectrum moved to shorter wavelengths. The same trends of these characteristics were also observed in the other three tapered fiber lasers.  相似文献   

17.
分布式抽运连续光纤激光器研究   总被引:3,自引:3,他引:0       下载免费PDF全文
为了避免高功率光纤激光器中光纤端面出现热效应问题,依据多点级联结构的耦合器,对分布式抽运的光纤激光器进行了研究。首先,介绍了实验室自主研制的级联耦合器。然后,分析了耦合器插入对光纤激光器的影响。最后,选用自制的耦合器搭建了分布式抽运的光纤激光器。实验结果表明:对耦合器插入损耗的研究,能够促进高功率级联耦合器的实现。在光纤激光器结构中,975 nm泵浦功率注入1.1 k W时,1 080nm激光功率输出为770 W,光-光转换效率为77%。在主控振荡功率放大结构中,激光功率输出为635 W,放大级的光-光转换效率为78%。分布式抽运方式可以使泵浦光多点注入,避免了热量的集中,能够获得千瓦级的激光功率输出。  相似文献   

18.
国产光纤实现同带抽运3000W激光输出   总被引:2,自引:0,他引:2       下载免费PDF全文
同带抽运是目前实现高功率光纤激光器的有效手段.本文基于同带抽运方式,以国产25/250μm掺镱双包层光纤为增益光纤,构建了全光纤化的主控振荡器功率放大器.实验中采用的国产光纤是中国电子科技集团公司第四十六研究所采用化学气相沉积结合气相-液相复合掺杂工艺制备的,其Yb~(3+)离子的分布更均匀,吸收截面更大,吸收系数更高.实验中,在种子光功率为67.8 W、抽运总功率为3511 W的条件下,实现了3079 W的激光输出,斜效率为85.9%,光束质量M~2约为2.14,3dB带宽为1.4nm,这是目前基于国产光纤同带抽运方式实现的最高功率.理论和实验结果表明国产光纤制备技术不断成熟,已经具备承受高功率输出的能力.继续提高抽运功率,优化增益光纤长度,改良散热方式,国产光纤有望实现更高功率的激光输出.  相似文献   

19.
Efficient and stable continuous-wave (CW) laser operation at 1053 nm in a Nd-doped phosphate single-mode fiber (Nd:PSMF) has been demonstrated experimentally. The fiber laser consisted of a 21 cm Nd:PSMF placed in a F-P cavity formed by high reflector butt-coupled to coupling end of the fiber and Fresnel reflection of the other end facet. An output power of 1.42 W and a slope efficiency of 34.1% (18.4%) with respect to absorbed pump power (incident pump power) were obtained with 808 nm diode pumping. An increment as much as 9.7 and 15.0% in slope efficiency of the input coupling efficiency and the output power, respectively, were obtained by using a local-cooling design provided by watered sealing the coupling point. The repeatable results indicate that the design, featuring fluid sealing the coupling point of the fiber laser, which was capable of offering an effective alleviation of thermal effects and an elevation of the quality of the laser cavity, could be expected to be a convenient and effective scheme to improve the performance characteristics of the non-silica fiber lasers and the high power fiber lasers, generally in free-space coupling configuration.  相似文献   

20.
The recent demonstration of rare‐earth‐doped fiber lasers with a continuous‐wave output power approaching the 10‐kW level with diffraction‐limited beam quality proves that fiber lasers constitute a scalable solid‐state laser concept in terms of average power. In order to generate high peak power pulses from a fiber several fundamental limitations have to be overcome. This can be achieved by novel experimental strategies and fiber designs that offer an enormous potential towards ultrafast laser systems combining high average powers (> kW) and high peak power (> GW). In this paper the challenges, achievements and perspectives of ultrashort pulse generation and amplification in fibers are reviewed. This kind of laser system will have a tremendous impact on strong‐field physics experiments, such as the generation of coherent light by high‐harmonic generation. So far, applications in the interesting EUV spectral range suffer from the very low photon count leading to nonrelevant integration times with highly sophisticated detection schemes. High repetition rate high average power fiber lasers can potentially solve this issue. First demonstrations of high repetition‐rate strong‐field physics experiments using novel fiber laser systems will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号