首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
 Starting from the dinuclear chloro-bridged Ir(I) complexes [IrCl(PP)]2 (PP = (R)-(6,6′-dimethylbiphenyl-2,2′-diyl)-1,1′-bis-(diphenylphosphine), (R)-(6,6′-dimethoxy-biphenyl-2,2′-diyl)-1,1′-bis-(diphenylphosphine), and (R)-1-((S)-2-(diphenylphosphino-ferrocenyl))-ethyldicyclohexylphosphine), a new class of cyclopentadienyl Ir(I) complexes containing a chiral bisphosphine ([IrCp(PP)]) was prepared and characterized. These new complexes are suited precatalysts for the direct hydroarylation of norbornene with benzamide. 2-(exo-Norbornyl)-benzamide is formed with an enantiomeric excess of up to 94% by the use of 1 mol% iridium, albeit in low yield.  相似文献   

2.
Summary.  The reaction of dinuclear rhodium(I) derivatives of the formula [Rh(DIOL)X]2 with the axially chiral phosphinyl phosphane 2-(diphenylphosphinyl)-2′-(diphenylphosphanyl)-1,1′-binaphthalene ((S)-BINAPO, 1) leads to the formation of cationic complexes [(BINAPO)Rh(DIOL)]+ where the ligand (S)-BINAPO consistently displays a P,O-chelate coordination which is mantained even in solvents of fair polarity. The mononuclear rhodium(I) complexes (S)-2-diphenylphosphanyl-2′-diphenylphosphinyl-1,1′-binaphthalene-(1,5-cyclooctadiene) rhodium tetrafluoroborate (3b) and (S)-2-diphenylphosphanyl-2′-diphenylphosphinyl-1,1′-binaphthalene-(1,4-norbornadiene) rhodium tetrafluoroborate (3c) with 1,5-cyclooctadiene (COD) and 2,5-norbornadiene (NBD) as the diolefin were isolated and characterized. Both show a fluxional behaviour in solution which is due to the mobility of the diolefin rather than to a displacement-recombination of the oxygenated arm of the ligand. The mobility of the 1,4-norbornadiene ligand in 3c is extremely pronounced and the coordinated diolefin flexibility could be frozen only at about 200 K. These complexes are active but poorly stereoselective catalysts for the hydrogenation, hydroboration, and hydroformylation of alkenes. Received June 16, 2000. Accepted (revised) July 24, 2000  相似文献   

3.
Summary.  The structure of the dehydrogenation product 1′,3a′-dihydro-3′-((1,3-dioxoindan-2-ylidene)-phenyl-methyl)-5′-phenyl-spiro-(indan-2,1′-pyrrolo[3,4-c]pyrrole)-1,3,4′,6′-(5′H, 6a′H)-tetrone derived from the cycloadducts (±)-(3a′S,6a′R)-1′,3a′-dihydro-3′-((R)-α-(1,3-dioxoindanyl)-benzyl)-5′-phenyl-spiro-(indan-2,1′-pyrrolo[3,4-c]pyrrole)-1,3,4′,6′(5H,6a′H)-tetrone and/or (±)-(3a′S,6a′R)-1′,3a′-dihydro-3′-((S)-α-(1,3-dioxoindanyl)-benzyl)-5′-phenyl-spiro-(indan-2,1′-pyrrolo[3,4-c]pyrrole)-1,3,4′,6′(5H,6a′H)-tetrone, which were synthesized by 1,3-dipolar cycloaddition of N-phenylmaleimide to 2-((2-(1,3-dioxoindan-2-yl)-2-phenyl-ethenyl)-imino)-indan-1,3-dione, was determined by X-ray analysis. Crystal data (CCD, 180 K): rhombohedral, R&3macr;;, a = 34.0871(7), c = 13.9358(5) ?, Z = 18; the structure was solved by direct methods and refined by full-matrix least-squares procedures to R(F, I ≥ 3σ(I)) = 0.053. The molecule contains a central folded ring system of two cis-fused 5-membered heterocyclic rings; each ring is nearly planar, and the angle between the rings amounts to 59.0°. Dynamic 1H NMR spectroscopy of the product revealed an exchange process caused by restricted rotation of the double bonded 1,3-indandione moiety and the phenyl group about the Csp2-Csp2 single-bonds. Molecular modeling and complete lineshape analysis indicated a four site exchange process for which free energies of activation and free energies could be established. ΔG values for the barriers of rotation are in the range of 57–59 kJ · mol − 1 at 273 K, which is unusually high for an unsubstituted phenyl group. Received May 3, 2001. Accepted (revised) June 8, 2001  相似文献   

4.
The new axially dissymmetric diphosphines (R)- and (S)-(6,6′-dimethoxybiphenyl-2,2′-diyl)bis(diphenyl phosphine) ((R)- and (S)- 5a ; ‘MeO-BIPHEP’) and the analogues (R)- and (S)- 5b and 5c have been synthesized in enantiomerically pure form. These ligands have become readily available by a synthetic scheme which employs, as key steps, an ortho-lithiation/iodination reaction of the (m-methoxyphenyl)diprienylphosphine oxides 8 and a subsequent Ullmann reaction of the resulting iodides 9 to provide the racemic bis(phosphine oxides) 10 . The bis(phosphine oxides) 10 subsequently are resolved with (?)-(2R,3R)- and (+)-(2S,3S)-O-2,3-dibenzoyltartaric acid and reduced to diphosphines 5 . The Ullmann reaction constitutes a new and efficient route to 2,2′-bis(phosphinoyl)-substituted biphenyl systems. Absolute configurations were established for (R)- 5a by X-ray analysis of the derived Pd complex (R,R)- 17a , and for 5b and 5c by means of 1H-NMR comparisons of the derived Pd complexes 16 or 17 , respectively, and by means of CD comparisons. The MeO-BIPHEP diphosphine 5a proved to be as efficient as the previously described BIPHEMP diphosphine ((6,6′-dimethylbiphenyl-2,2′-diyl)bis(diphenylphosphine)) in enantioselective isomerizations and hydrogenations.  相似文献   

5.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

6.
Summary.  Bis-hydrazonoyl chlorides react regioselectively with pyrimidine-2-thiones, which contain a masked thiourea residue, to give the hitherto unknown annelated 2,3-bis-arylhydrazono-thiazoles and 3,3′-bis-1,2,4-triazoles. Reaction of bis-hydrazonoyl chlorides with 2-methylthio derivatives gave only 3,3′-bis-1,2,4-triazoles. Received October 4, 2000. Accepted (revised) December 20, 2000  相似文献   

7.
Summary.  Rh(III) polypyridine complexes ([Cp *Rh(ppy)(H2O)]2+; ppy = 2,2′-bipyridine, 2,2′-bipyridine-4,4′-dicarboxylate, o-phenanthroline, tetrahydro-4,4′-dialkyl-bis-oxazole) oxidize in organic or aqueous alkaline solution primary and secondary alcohols to aldehydes or ketones and are thereby reduced to the Rh(I) complexes Cp *Rh(ppy). The Rh(III) form can be regenerated byoxidants like pyruvate or oxygen, making the reaction quasi-catalytic. The reaction follows anautocatalytic pathway; hydrogen transfer from the α-CH2 group of an alcoholate complex [Cp *Rh(ppy)(OR)]+ to Cp *Rh(I)(ppy) is suggested to yield the Rh(II) intermediate Cp *Rh(ppy)H as the key and rate determining step. The knowledge of Rh(III)/Rh(I) redox potentials allows to estimate the thermodynamic driving force of the reaction which is not more than about 300 mV.  相似文献   

8.
Summary.  The mechanisms of photoinduced processes occurring in methanolic solutions of trans-[Fe(4-R-benacen)(CH3OH)I] (4-R-benacen 2− : N,N′-ethylene-bis-(4-R-benzoylacetoneiminato) tetradentate open-chain Schiff bases with R = H, Cl, Br, CH3, OCH3, or NO2) were investigated by electronic absorption spectroscopy and EPR spin trapping. The complexes are redox-stable in the dark both in the solid state and in methanolic solutions. Ultraviolet and/or visible irradiation in methanol induces photoreduction of Fe(III) to Fe(II). No formation of I˙ or was observed. ˙CH2OH radicals and/or solvated electrons were identified in irradiated systems using nitrosodurene or 5,5-dimethyl-1-pyrroline-N-oxide as spin traps. The final product of the photooxidation coupled with the photoreduction of Fe(III) is formaldehyde, the molar ratio of Fe(II) and CH2O being close to 2:1. The efficiency of the photoredox process is strongly wavelength dependent and influenced by the peripheral groups R of the tetradentate ligands. It is suggested that the primary photoredox step starts from thermally nonequilibrated ligand-to-metal charge transfer excited states. Received May 2, 2001. Accepted May 30, 2001  相似文献   

9.
The host compounds 1,1’-binaphthyl-2,2′-dihydroxy-5,5′-dicarboxylic acid (1) and 1,1′-binaphthyl-2,2′-dihydroxy-6,6′-dicarboxylic acid (2) have been synthesized, and their inclusion properties have been studied. Inclusion complexes formed by 1 and 2 with volatile guests such as acetone and methanol release the guests only at much higher temperatures than their boiling points. The crystal structures of the inclusion complexes have been determined from single crystal X-ray diffraction data and show different host lattices.  相似文献   

10.
The new multidentate Schiff-base (E)-6,6′-((1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-ylidene))bis(4-methyl-2-((E)(pyridine-2-ylmethylimino)methyl)phenol) H2L and its polymeric binuclear metal complexes with Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) are reported. The reaction of 2,6-diformyl-4-methyl-phenol with ethylenediamine in mole ratios of 2:1 gave the precursor 3,3′-(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1ylidene))bis(methan-1-yl-1-ylidene)bis(2-hydroxy-5-methylbenzaldehyde) W. Condensation of the precursor with 2-(amino-methyl)pyridine in mole ratios of 1:2 gave the new N6O2 multidentate Schiff-base ligand H2L. Upon complex formation, the ligand behaves as a dibasic octadentate species with the involvement of the nitrogen atoms of the pyridine groups in coordination for all complexes. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Cd(II) and Hg(II) complexes of general formulae [Cr2III(L)Cl2]Cl2, [Ni2II(L)(H2O)2]Cl2 and [M2(L)Cl2] and five co-ordinate Zn(II) complex of general formula [Zn2II(L)]Cl2.  相似文献   

11.
Wholly aromatic polymers with various helical structures were prepared through the combination of two axially dissymmetric bifunctional compounds. The palladium-catalyzed condensation of (R)-2,2-diethoxy-6,6′-dibromo-1,1′-binaphthyl with (R)-1,1′-binaphthyl-2,2′-diamine and the reaction of (S)-2,2-diethoxy-6,6′-dibromo-1,1′-binaphthyl with (S)-1,1′-binaphthyl-2,2′-diamine produced helical polyamines, and the chiral conformation was confirmed by their circular dichroism spectra and large specific rotations. The combination of (R)-2,2-diethoxy-6,6′-dibromo-1,1′-binaphthyl and (S)-1,1′-binaphthyl-2,2′-diamine afforded polyamines with a zigzag conformation. The condensation of (R)-2,2′-dimethylbiphenyl-6,6′-dicarbonyl chloride with (R)-2,2′-diamino-6,6′-dimethylbiphenyl and the reaction of (S)-2,2′-dimethylbiphenyl-6,6′-dicarbonyl chloride with (S)-2,2′-diamino-6,6′-dimethylbiphenyl predominantly yielded cyclic dimers and tetramers because of the steric proximity of the reactive groups of the propagating species. The experimental results indicated that the structures of the obtained polymers depended on the combination of the chirality of the bifunctional atropisomeric compounds and the position of the functional groups on the aromatic rings. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4607–4620, 2004  相似文献   

12.
New mononuclear 3,6-di-tert-butyl-o-benzosemiquinone complexes of copper(1) with bis(diphenylphosphine) ligands were synthesized: (DBSQ)Cu(dppe) (1) (DBSQ=3,6-di-tert-butyl-o-benzosemiquinone and dppe=1,2-bis(diphenylphosphino)ethane), (DBSQ)Cu(dppp) (2) (dppp=1,3-bis(diphenylphosphino)propane), (DBSQ)Cu(dppn) (3) (dppn=2,2′-bis(diphenylphosphino)-1,1′-binaphthyl), and (DBSQ)Cu(dppfc) (4) (dppfc=1,1′-bis(diphenylphosphino)ferrocene). The compositions and structures of complexes1–4 were characterized by elemental analysis and electronic absorption, IR, and ESR spectroscopy. The molecular structures of complexes3 and4 were established by X-ray diffraction analysis. The reactions of elimination and replacement of neutral ligands in the coordination sphere of the complexes were studied by ESR spectroscopy. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2333–2340, November, 1998.  相似文献   

13.
The new tetradentate symmetrical (2R,2′S)-1,1′-piperazine-1,4-diyldipropane-2-thiol) (L1), (2S)-1-[bis(2-aminoethyl)amino]propan-2-ol) (L2), and 2-{(E)-[((1R,2S)-2-{[(1Z)-(2-hydroxy phenyl)methylene]amino}cyclohexyl)imino]methyl}phenol (L3) ligands were synthesized and characterized on the basis of FT-IR, 1H, 13C NMR, EI mass, and elemental analysis. Three commercially available ligands, (2,2′-[ethane-1,2-diylbis(thio)]diethanol (L4), 2,2′-dithiodiethanenamine (L5), and (2,2′-[ethane-1,2-diyldi(imino)] diethanol (L6), were also studied. Pt(II) complexes were characterized by FTIR, elemental analysis and thermal methods. Thermal behaviors of these complexes were investigated in the range 10–1000 °C. Magnetic properties were also studied, and the all complexes were found to be diamagnetic. The structures consist of the monomeric units in which the Pt(II) atoms exhibit square planar geometry. N,N′-bis(salicylidene)-1,2-cyclohexane has been synthesized and characterized by X-ray single crystal diffraction measurement. The ligand crystallizes in monoclinic crystal system and space group, Cc.  相似文献   

14.
Summary.  A new soluble vic-dioxime 1,4-(isobutyl)-2,3-bis-(hydroxyimino)-5,6-phenylpiperazine was prepared as a mixture of isomers from anti-dichloroglyoxime and N,N′-bis-(isobutyl)-stilbendiamine which reacts to N,N′-coordinated planar metal complexes with Ni(II), Cu(II), Co(II), and Pd(II). Oxidation of the Co(II) complex in the presence of pyridine leads to an octahedral complex containing pyridine and chloride as axial ligands in addition to the vic-dioxime ligands. The uranyl complex has a 1:1 metal:ligand ratio and a dinuclear structure with μ-hydroxo bridges. Received November 14, 2000. Accepted (revised) January 23, 2001  相似文献   

15.
The novel (E,E)-dioxime,7,8-bis(hydroxyimino)-1,14-bis(monoaza[8]crown-6)-benzo[f]-4,11-dioxa-1,14-diazadecane[7,8-g]quinoxaline (H2L), has been synthesized by the reaction of 6,7-diamino-1,12-bis(monoaza[18]crown-6)benzo[f]-4,9-dioxa-1,12-diazadecane (4) which has been prepared by the reduction of 6,7-dinitro-1,12-bis(mono-aza[18]crown-6)benzo[f]-4,9-dioxa-1,12-diazdecane (3) and cyanogendi-N-oxide. Mononuclear NiII and CuII complexes of H2L have a metal:ligand ratio of 1:2 and the ligand coordinates through two hydroxyimino nitrogen atoms, as do most of the (E,E)-dioximes. The hydrogen-bridged NiII complex was converted into its BF 2 + capped anologue by the reaction with BF3 · Et2O. The reaction of the CuII complex with 2,2′-dipyridyl as an end-cap ligand gave the homotrinuclear complex. Structures for the ligand and its complexes are proposed in accordance with elemental analysis, magnetic susceptibility measurements, 1H, 13C-n.m.r, IR and MS spectral data.  相似文献   

16.
(6,6′-Dimethyl-1,1′-biphenyl-2,2′-diyl)bis(diphenylphosphine) ( = biphemp) reacts with allymetal halidesm to yeild complexes 1–3 which were transformed into the corresponding perchlorates 4–6 . The molecular structures of 4–6 were determined by X-ray analyses.  相似文献   

17.
Summary.  tris-(Benzimidazol-2-yl-methyl)-amine, H3 ntb, was prepared and used in the synthesis of dinuclear Ru(II) polypyridyl and polynuclear Ru(II)–Co(III) complexes of the type [Ru2(H2 ntb) (bpy)4]3+, [Ru2(Hntb)(phen)4]2+, [(Ru2(H2 ntb)(bpy)4)2Co(en)2]9+, and [(Ru2(Hntb)(phen)4)2 Co(en)2]7+ (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, en = 1,2-diaminoethane). The complexes were characterized by elemental analysis as well as spectroscopic and redox data. The luminescent properties of the complexes were also studied. The complexes showed significant antitumour and anti-HIV activities. Received May 9, 2001. Accepted (revised) June 7, 2001  相似文献   

18.
A comparative study of asymmetric hydrogenation and deuteration of methyl levulinate catalyzed by the RuII—(S)-BINAP—HCl system (BINAP is 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl) in MeOH and MeOD was carried out. The results obtained suggest an important role of the protic solvent in the formation of catalytically active ruthenium complexes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 531–533, March, 2007.  相似文献   

19.
The template condensation of (R)-2,2′-diamino-1,1′-binaphthyl and 2,6-diformylpyridine leads to lanthanide(III) complexes of the new chiral hexaaza macrocycle L that adopts highly twisted conformation in [LnL](NO3)3 complexes. The complexes have been characterised by ESI MS spectrometry and NMR spectroscopy. The analogous N2O4 chiral crown ether L2 that has the same carbon skeleton as L does not exhibit tendency to bind lanthanide(III) ions. The X-ray crystal structure of L2 exhibit squeezed conformation of the macrocycle and spatial disposition of donor atoms that does not predispose it for coordination of lanthanide(III) ions.  相似文献   

20.
(1R,1′R,2S,4R)-1,7,7-Trimethylspiro[bicyclo[2.2.1]heptane-2,2′-[1,3]dithiolane] 1′-oxide, (1R,2S,3′R,4R)-1,7,7-trimethylspiro[bicyclo[2.2.1]heptane-2,2′-[1,3]dithiolane] 1′,1′,3′-trioxide, and (1R,4R)-1,7,7-trimethylspiro[bicyclo[2.2.1]heptane-2,2′-[1,3]dithiolane] 1′,1′,3′,3′-tetraoxide were synthesized by oxidation of camphor ethylene dithioacetal with m-chloroperoxybenzoic acid at different substrate-tooxidant ratios. The structure of the products was proved by IR and NMR spectroscopy and X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号