首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present DFT study, the catalytic mechanism of H2O2 formation in the oxidative half-reaction of NiSOD, E-Ni(II) + O2- + 2H+ --> E-Ni(III) + H2O2, has been investigated. The main objective of this study is to investigate the source of two protons required in this half-reaction. The proposed mechanism consists of two steps: superoxide coordination and H2O2 formation. The effect of protonation of Cys6 and the proton donating roles of side chains (S) and backbones (B) of His1, Asp3, Cys6, and Tyr9 residues in these two steps have been studied in detail. For protonated Cys6, superoxide binding generates a Ni(III)-O2H species in a process that is exothermic by 17.4 kcal/mol (in protein environment using the continuum model). From the Ni(III)-O2H species, H2O2 formation occurs through a proton donation by His1 via Tyr9, which relative to the resting position of the enzyme is exothermic by 4.9 kcal/mol. In this pathway, a proton donating role of His1 residue is proposed. However, for unprotonated Cys6, a Ni(II)-O2- species is generated in a process that is exothermic by 11.3 kcal/mol. From the Ni(II)-O2- species, the only feasible pathway for H2O2 formation is through donation of protons by the Tyr9(S)-Asp3(S) pair. The results discussed in this study elucidate the role of the active site residues in the catalytic cycle and provide intricate details of the complex functioning of this enzyme.  相似文献   

2.
Transaminase is a key enzyme for amino acid metabolism, which reversibly catalyzes the transamination reaction with the help of PLP (pyridoxal 5' -phosphate) as its cofactor. Here we have investigated the mechanism and free energy landscape of the transamination reaction involving the aspartate transaminase (AspTase) enzyme and aspartate-PLP (Asp-PLP) complex using QM/MM simulation and metadynamics methods. The reaction is found to follow a stepwise mechanism where the active site residue Lys258 acts as a base to shuttle a proton from α -carbon (CA) to imine carbon (C4A) of the PLP-Asp Schiff base. In the first step, the Lys258 abstracts the CA proton of the substrate leading to the formation of a carbanionic intermediate which is followed by the reprotonation of the Asp-PLP Schiff base at C4A atom by Lys258. It is found that the free energy barrier for the proton abstraction by Lys258 and that for the reprotonation are 17.85 and 3.57 kcal/mol, respectively. The carbanionic intermediate is 7.14 kcal/mol higher in energy than the reactant. Hence, the first step acts as the rate limiting step. The present calculations also show that the Lys258 residue undergoes a conformational change after the first step of transamination reaction and becomes proximal to C4A atom of the Asp-PLP Schiff base to favor the second step. The active site residues Tyr70* and Gly38 anchor the Lys258 in proper position and orientation during the first step of the reaction and stabilize the positive charge over Lys258 generated at the intermediate step.  相似文献   

3.
Proton migration in protonated glycylglycylglycine (GGG) has been investigated by using density functional theory at the B3LYP/6-31++G(d,p) level of theory. On the protonated GGG energy hypersurface 19 critical points have been characterized, 11 as minima and 8 as first-order saddle points. Transition state structures for interconversion between eight of these minima are reported, starting from a structure in which there is protonation at the amino nitrogen of the N-terminal glycyl residue following the migration of the proton until there is fragmentation into protonated 2-aminomethyl-5-oxazolone (the b(2) ion) and glycine. Individual free energy barriers are small, ranging from 4.3 to 18.1 kcal mol(-)(1). The most favorable site of protonation on GGG is the carbonyl oxygen of the N-terminal residue. This isomer is stabilized by a hydrogen bond of the type O-H.N with the N-terminal nitrogen atom, resulting in a compact five-membered ring. Another oxygen-protonated isomer with hydrogen bonding of the type O-H.O, resulting in a seven-membered ring, is only 0.1 kcal mol(-)(1) higher in free energy. Protonation on the N-terminal nitrogen atom produces an isomer that is about 1 kcal mol(-)(1) higher in free energy than isomers resulting from protonation on the carbonyl oxygen of the N-terminal residue. The calculated energy barrier to generate the b(2) ion from protonated GGG is 32.5 kcal mol(-)(1) via TS(6-->7). The calculated basicity and proton affinity of GGG from our results are 216.3 and 223.8 kcal mol(-)(1), respectively. These values are 3-4 kcal mol(-)(1) lower than those from previous calculations and are in excellent agreement with recently revised experimental values.  相似文献   

4.
The conformational behavior of the C-terminal neurotensin pentapeptide, Arg–Pro–Tyr–Ile–Leu OH [NT(9–13)], was investigated using empirical energy calculations. A special aim was to display the specific contribution of each residue to induce conformations able to interact with biological receptors. Restrictions were then introduced in intramolecular interactions involving the Arg side chain and the terminal COOH group. The stablest conformations include in the order of decreasing stability: a distorted helical form for the C-terminal tetrapeptide, a (Pro2–Tyr3) β turn I, an α helix, an extended form, and a (Tyr2–Ile3) β turn III, which are energetically rather close (ΔE < 3 kcal/mol). The NT(9–13) peptide appears then as a rather flexible molcule with a noteworthy ability of adaptation to a substrate. Extended forms would be in agreement with a zipper model of interactions with receptors, whereas folded forms involving helices and β, γ turns would support a lock and key model. The specific contribution of side chains, specially those of Tyr and Arg residues as well as the key position of the Pro residue emerge clearly from this study.  相似文献   

5.
Modeling of the glutathione peroxidase-like activity of phenylselenol has been accomplished using density-functional theory and solvent-assisted proton exchange (SAPE). SAPE is a modeling technique intended to mimic solvent participation in proton transfer associated with chemical reaction. Within this method, explicit water molecules incorporated into the gas-phase model allow relay of a proton through the water molecules from the site of protonation in the reactant to that in the product. The activation barriers obtained by SAPE for the three steps of the GPx-like mechanism of PhSeH fall within the limits expected for a catalytic system at physiological temperatures (DeltaG(1)++ = 19.1 kcal/mol; DeltaG(2)++= 6.6 kcal/mol; G(3)++ = 21.7 kcal/mol) and are significantly lower than studies which require direct proton transfer. The size of the SAPE network is also considered for the model of the reduction of the selenenic acid, step 2 of the GPx-like cycle. Use of a four-water network better accommodates the reaction pathway and reduces the activation barrier by 5 kcal/mol over the two-water model.  相似文献   

6.
7.
Quantum mechanics/molecular mechanics calculations in tyrosine ammonia lyase (TAL) ruled out the hypothetical Friedel-Crafts (FC) route for ammonia elimination from L-tyrosine due to the high energy of FC intermediates. The calculated pathway from the zwitterionic L-tyrosine-binding state (0.0?kcal mol(-1)) to the product-binding state ((E)-coumarate+H(2)N-MIO; -24.0?kcal mol(-1); MIO = 3,5-dihydro-5-methylidene-4H-imidazol-4-one) involves an intermediate (IS, -19.9?kcal mol(-1)), which has a covalent bond between the N atom of the substrate and MIO, as well as two transition states (TS1 and TS2). TS1 (14.4?kcal mol(-1)) corresponds to a proton transfer from the substrate to the N1 atom of MIO by Tyr300-OH. Thus, a tandem nucleophilic activation of the substrate and electrophilic activation of MIO happens. TS2 (5.2?kcal mol(-1)) indicates a concerted C-N bond breaking of the N-MIO intermediate and deprotonation of the pro-S β position by Tyr60. Calculations elucidate the role of enzymic bases (Tyr60 and Tyr300) and other catalytically relevant residues (Asn203, Arg303, and Asn333, Asn435), which are fully conserved in the amino acid sequences and in 3D structures of all known MIO-containing ammonia lyases and 2,3-aminomutases.  相似文献   

8.
Ab initio calculations at the B3LYP/6–311 ++G(2df,2p) and B3LYP/6–31G(d) level have been carried out to investigate the reaction mechanism of methionine sulfoxide reductases of class A. These enzymes reduce oxidized methionine in vivo and therefore play an important role in repairing protein damage caused by the oxidative stress. Our calculations have been carried out for a model reaction in a model active site. Several reaction mechanisms have been explored that can roughly be described as (2H+ + 2e) or (H+ + e). The results suggest that the actual reaction mechanism is of the (2H+ + 2e) type corresponding to a more or less asynchronous-concerted double-proton transfer reaction leading to the formation of methionine (dimethylthioether in our model) and a sulfenic acid Cys-SOH. The Michaelis complex would involve one deprotonated Cys and one protonated Glu residues in the active site, this protonation state being mandatory to stabilize the sulfoxide substrate. Then, proton transfer from Glu to the substrate takes place, followed by proton transfer from one Tyr residue and fast reorganization of the system. The overall activation energy barrier is estimated to fall in the range 7–9 kcal/mol, much lower than the predicted barrier in DMSO solution (29.6 kcal/mol) reported before.  相似文献   

9.
Mechanisms of dopamine hydroxylation by the Cu(II)-superoxo species and the Cu(III)-oxo species of dopamine beta-monooxygenase (DBM) are discussed using QM/MM calculations for a whole-enzyme model of 4700 atoms. A calculated activation barrier for the hydrogen-atom abstraction by the Cu(II)-superoxo species is 23.1 kcal/mol, while that of the Cu(III)-oxo, which can be viewed as Cu(II)-O*, is 5.4 kcal/mol. Energies of the optimized radical intermediate in the superoxo- and oxo-mediated pathways are 18.4 and -14.2 kcal/mol, relative to the corresponding reactant complexes, respectively. These results demonstrate that the Cu(III)-oxo species can better mediate dopamine hydroxylation in the protein environment of DBM. The side chains of three amino acid residues (His415, His417, and Met490) coordinate to the Cu(B) atom, one of the copper sites in the catalytic core that plays a role for the catalytic function. The hydrogen-bonding network between dopamine and the three amino acid residues (Glu268, Glu369, and Tyr494) plays an essential role in substrate binding and the stereospecific hydroxylation of dopamine to norepinephrine. The dopamine hydroxylation by the Cu(III)-oxo species is a downhill and lower-barrier process toward the product direction with the aid of the protein environment of DBM. This enzyme is likely to use the high reactivity of the Cu(III)-oxo species to activate the benzylic C-H bond of dopamine; the enzymatic reaction can be explained by the so-called oxygen rebound mechanism.  相似文献   

10.
This paper describes the generation of a pseudoreceptor model for ryanodine receptor (RyR) modulating ryanoids in rabbit skeletal muscle. For this purpose, the molecular modelling software PrGen was applied to correlate experimentally determined and calculated free energies of binding for a set of 15 ryanodine derivatives. The final model indicates a narrow cleft with hydrogen bond donor and acceptor capacities (represented by an Asn) as most crucial for binding the pyrrole carboxylate substituent at C3 of ryanodine. In addition, hydrophobic residues flank the aromatic pyrrole ring (Tyr, Phe, and Ile). Two of those residues (Tyr and Ile) interact with the 2-isopropyl moiety, which seems to contribute to binding. Opposite to the pyrrole locus, a second hydrophobic region (represented by a Leu) restricts ryanodine derivatives in their longitudinal axis and leads to the discrimination of equatorial and axial positioned methyl groups and of polar substituents at C9. Finally, a charged glutamate residue generates strong hydrogen bonding and electrostatic interactions with the hydroxyl groups at C10 and C15. For this binding-site model – composed of six amino acid residues – a correlation for the training set ligands of R = 0.99 (Q2 = 0.975) and a root mean square (rms) deviation of 0.568 kcal/mol for the prediction of the binding energies of four test set ligands was obtained. Based on this pseudoreceptor model the putative topology of the real binding site of ryanoids will be discussed.  相似文献   

11.
The cis-doubly N-confused porphyrin, H2N2CP, containing two adjacent confused pyrrole rings has been investigated from the point of view of its acid-base and electrochemical behavior in dichloromethane. This novel porphyrin isomer can form two metal-carbon bonds in the central core, stabilizing metal ions in unusually high oxidation states. Furthermore, the two outside N-pyrrole atoms remain available for acid-base and specific solvent interactions. Protonation of the pyrrole N atoms proceeds according to two successive steps, while only a single deprotonation step has been observed in the presence of bases. Similarly, in the case of the silver and copper complexes the protonation and deprotonation of the outer pyrrole rings have been detected, confirming the structure of the metalated species as M(III)-HN2CP. The electrochemical reduction of the metal ions (III/II redox process) and oxidation of the macrocycle ring have been detected respectively at -0.9 and 1.4 V based on spectroelectrochemical measurements in conjunction with the acid/base equilibrium studies. Additional waves observed around -0.5 and 1.3 V have been assigned to redox processes involving water molecules associated with the doubly N-confused porphyrins.  相似文献   

12.
The present study addresses the conformational preferences and the mechanism of decarboxylation of levodopa (LD). LD is used to increase dopamine concentrations in the treatment of Parkinson's disease. LD crosses the protective blood–brain barrier, where it is converted into dopamine by the process of decarboxylation. Molecular dynamics simulation has been carried out at the DFT/6‐31++G level of theory to identify the global minimum structure of LD. Conformational preferences of the amino acid side chain of LD has been investigated at the B3LYP/6‐311++G** level of theory. Fourier transform analysis has been performed to identify the origin of the rotational barriers. Electrostatic dipole moment and bond interactions underlie the observed potential energy barriers for rotation of the amino acid side chain of LD. The vital biological process of decarboxylation of LD has been examined in the gas phase and in aqueous solution. Without the presence of water, there is only one possible route for the decarboxylation of LD. In this concerted mechanism, a proton transfer and breakage of the C10—C18 bond, take place simultaneously (ΔE# = 73.2 kcal/mol). In solution, however, two possible decarboxylation routes are available for LD. The first involve the formation of a zwitterionic intermediate (ΔE# = 72.4 kcal/mol). The zwitterionic form of LD have been localized using explicitly bound water molecules to model short‐range solvent effects and self‐consistent reaction field polarized continuum model to estimate long‐range solvent interactions. The second route involve the formation of a cyclic structure in which a water molecule acts as a bridge linking the anticarboxylic hydrogen and α‐position carbon atom (ΔE# = 59.8 kcal/mol). Natural bond orbital (NBO) analysis reveals that the conformational and overall stability of the amino acid side chain is facilitated by the antiperiplanar interactions between the phenyl moiety C—H and C—C bonds and C—X bonds of the amino acid side chain. However, much of the major donor–acceptor interactions is of the lone pair type and is localized within the amino acid side chain itself. Results of the present work reveal that NBO data reflect nicely and identify clearly reaction coordinates at the transition species. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
A large set of charged species arising mainly from protonation or deprotonation of hydrocarbons, alcohols, ethers, carboxylic acids, amines, imines, and nitriles has been studied by means of the semiempirical self-consistent-field (SCF ) molecular orbital (MO ) MNDO method. From the calculated heats of formation of such charged species and those of neutral molecules, MNDO -estimated proton affinities have been obtained and the results compared with experimental gas-phase proton affinities. If the small size anions and acetylides, for which the method predicts heats of formation too large, are ruled out, the mean absolute error in calculated proton affinities is ca. 7 kcal/mol for hydrocarbons (22 acid-base pairs) and ca. 8 kcal/mol for oxygen-containing compounds (25 acid-base pairs). For nitrogen-containing molecules it is necessary to discard, in addition, the values corresponding to the protonation of alkylamines and imines in order to achieve a reasonable mean absolute error of 7–8 kcal/mol.  相似文献   

14.
Kinetic studies aimed at determining the most probable mechanism for the proton-dependent [Fe(II)(S(Me2)N(4)(tren))](+) (1) promoted reduction of superoxide via a thiolate-ligated hydroperoxo intermediate [Fe(III)(S(Me2)N(4)(tren))(OOH)](+) (2) are described. Rate laws are derived for three proposed mechanisms, and it is shown that they should conceivably be distinguishable by kinetics. For weak proton donors with pK(a(HA)) > pK(a(HO(2))) rates are shown to correlate with proton donor pK(a), and display first-order dependence on iron, and half-order dependence on superoxide and proton donor HA. Proton donors acidic enough to convert O(2)(-) to HO(2) (in tetrahydrofuran, THF), that is, those with pK(a(HA)) < pK(a(HO(2))), are shown to display first-order dependence on both superoxide and iron, and rates which are independent of proton donor concentration. Relative pK(a) values were determined in THF by measuring equilibrium ion pair acidity constants using established methods. Rates of hydroperoxo 2 formation displays no apparent deuterium isotope effect, and bases, such as methoxide, are shown to inhibit the formation of 2. Rate constants for p-substituted phenols are shown to correlate linearly with the Hammett substituent constants σ(-). Activation parameters ((ΔH(++) = 2.8 kcal/mol, ΔS(++) = -31 eu) are shown to be consistent with a low-barrier associative mechanism that does not involve extensive bond cleavage. Together, these data are shown to be most consistent with a mechanism involving the addition of HO(2) to 1 with concomitant oxidation of the metal ion, and reduction of superoxide (an "oxidative addition" of sorts), in the rate-determining step. Activation parameters for MeOH- (ΔH(++) = 13.2 kcal/mol and ΔS(++) = -24.3 eu), and acetic acid- (ΔH(++) = 8.3 kcal/mol and ΔS(++) = -34 eu) promoted release of H(2)O(2) to afford solvent-bound [Fe(III)(S(Me2)N(4)(tren))(OMe)](+) (3) and [Fe(III)(S(Me2)N(4)(tren))(O(H)Me)](+) (4), respectively, are shown to be more consistent with a reaction involving rate-limiting protonation of an Fe(III)-OOH, than with one involving rate-limiting O-O bond cleavage. The observed deuterium isotope effect (k(H)/k(D) = 3.1) is also consistent with this mechanism.  相似文献   

15.
A computational modeling of the protonation of corannulene at B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p) and of the binding of lithium cations to corannulene at B3LYP/6-311G(d,p)//B3LYP/6-31G(d,p) has been performed. A proton attaches preferentially to one carbon atom, forming a sigma-complex. The isomer protonated at the innermost (hub) carbon has the best total energy. Protonation at the outermost (rim) carbon and at the intermediate (bridgehead rim) carbon is less favorable by ca. 2 and 14 kcal mol(-)(1), respectively. Hydrogen-bridged isomers are transition states between the sigma-complexes; the corresponding activation energies vary from 10 to 26 kcal mol(-)(1). With an empirical correction obtained from calculations on benzene, naphthalene, and azulene, the best estimate for the proton affinity of corannulene is 203 kcal mol(-)(1). The lithium cation positions itself preferentially over a ring. There is a small energetic preference for the 6-ring over the 5-ring binding (up to 2 kcal mol(-)(1)) and of the convex face over the concave face (3-5 kcal mol(-)(1)). The Li-bridged complexes are transition states between the pi-face complexes. Movement of the Li(+) cation over either face is facile, and the activation energy does not exceed 6 kcal mol(-)(1) on the convex face and 2.2 kcal mol(-)(1) on the concave face. In contrast, the transition of Li(+) around the corannulene edge involves a high activation barrier (24 kcal mol(-)(1) with respect to the lowest energy pi-face complex). An easier concave/convex transformation and vice versa is the bowl-to-bowl inversion with an activation energy of 7-12 kcal mol(-)(1). The computed binding energy of Li(+) to corannulene is 44 kcal mol(-)(1). Calculations of the (7)Li NMR chemical shifts and nuclear independent chemical shifts (NICS) have been performed to analyze the aromaticity of the corannulene rings and its changes upon protonation.  相似文献   

16.
The decarboxylation of L-aspartate by E. coli L-aspartate-alpha-decarboxylase (ADC) is shown to occur with retention of configuration; analysis of the protein structure identifies Tyr58 as the proton donor in the decarboxylation mechanism.  相似文献   

17.
The substrate mechanism of class I ribonucleotide reductase has been revisited using the hybrid density functional B3LYP method. The molecular model used is based on the X-ray structure and includes all the residues of the R1 subunit commonly considered in the RNR substrate conversion scheme: Cys439 initiating the reaction as a thiyl radical, the redox-active cysteines Cys225 and Cys462, and the catalytically important Glu441 and Asn437. In contrast to previous theoretical studies of the overall mechanism, Glu441 is added as an anion. All relevant transition states have been optimized, including one where an electron is transferred 8 A from the disulfide to the substrate simultaneously with a proton transfer from Glu441. The calculated barrier for this step is 19.1 kcal/mol, which can be compared to the rate-limiting barrier indicated by experiments of about 17 kcal/mol. Even though the calculated barrier is somewhat higher than the experimental limit, the discrepancy is within the normal error bounds of B3LYP. The suggestion from the present modeling study is thus that a protonated Glu441 does not need to be present at the active site from the beginning of the catalytic cycle. However, the previously suggested mechanism with an initial protonation of Glu441 cannot be ruled out, because even with the cost added for protonation of Glu441 with a typical pK(a) of 4, the barrier for that mechanism is lower than the one obtained for the present mechanism. The results are compared to experimental results and suggestions.  相似文献   

18.
The mechanism of Michael addition of malononitrile to chalcones catalyzed by Cinchona alkaloid aluminium(III) complex has been investigated by DFT and ONIOM methods. Calculations indicate that the reaction proceeds through a dual activation mechanism, in which Al(III) acts as a Lewis acid to activate the electrophile α,β-unsaturated carbonyl substrate while the tertiary amine in the Cinchona alkaloid works as a Lewis base to promote the activation of the malononitrile and deprotonation. A stepwise pathway involving C-C bond formation followed by proton transfer from the catalyst to the carbonyl substrate is adopted, and latter step is predicted to be the rate-determining-step in the reaction with an energy barrier of 12.4 kcal mol(-1). In the absence of the Al(III)-complex, a Cinchona alkaloid activates the carbonyl substrate by a hydrogen bonding of the hydroxyl group, involving a higher energy barrier of 30.4 kcal mol(-1). The steric repulsion between the phenyl group attached to the carbonyl group in the chalcone and isopropoxyl groups of the Al(III)-complex may play an important role in the control of stereoselectivity. The π-π stacking effect between the quinuclidine ring of the quinine and the phenyl group of the chalcones may also help the stabilization of the preferred molecular complex. These results are in agreement with experimental observations.  相似文献   

19.
Orotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the exchange for deuterium from solvent D(2)O of the C-6 proton of 1-(β-d-erythrofuranosyl)-5-fluorouracil (FEU), a phosphodianion truncated product analog. The deuterium exchange reaction of FEU is accelerated 1.8 × 10(4)-fold by 1 M phosphite dianion (HPO(3)(2-)). This corresponds to a 5.8 kcal/mol stabilization of the vinyl carbanion-like transition state, which is similar to the 7.8 kcal/mol stabilization of the transition state for OMPDC-catalyzed decarboxylation of a truncated substrate analog by bound HPO(3)(2-). These results show that the intrinsic binding energy of phosphite dianion is used in the stabilization of the vinyl carbanion-like transition state common to the decarboxylation and deuterium exchange reactions.  相似文献   

20.
An intramolecular proton-transfer mechanism has been proposed for the carbocationic cyclization of farnesyl pyrophosphate (FPP) to (+)-aristolochene catalyzed by aristolochene synthase. This novel mechanism, which is based on results obtained by high-level ab initio molecular orbital and density functional theory calculations, differs from the previous proposal in the key step of carbocation propagation prior to the formation of the bicyclic carbon skeleton. Previously, germacrene A was proposed to be generated as an intermediate by deprotonation of germacryl cation followed by reprotonation of the C6-C7 double bond to yield eudesmane cation. In the mechanism proposed here the direct intramolecular proton transfer has a computed barrier of about 22 kcal/mol, which is further lowered to 16-20 kcal/mol by aristolochene synthase. An alternative pathway is also possible through a proton shuttle via a pyrophosphate-bound water molecule. The mechanism proposed here is consistent with the observation that germacrene A is not a substrate of aristolochene synthase. Furthermore, the modeled substrate-enzyme complex suggests that Trp 334 and Phe 178 play key roles in positioning the substrate in the reactive orientation in the binding pocket. This is consistent with experimental findings that mutations of either residue lead to pronounced generation of aborted cyclization products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号