首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

2.
CuII/RuII and CdII/RuII hybrid complexes [Cu(L1–3)(NC5H4C≡CRu(dppe)2Cl)] (1a-3a) and [Cd(L1-3)(NC5H4C≡CRu(dppe)2Cl)] (1b–3b) have been prepared by reaction of trans-[RuCl(dppe)2(C≡C-py-3)] (1) with copper or cadmium acetate in the presence of Schiff base ligands LH1–3 (where LH = 2-(pyrrole-2-yl-methylidine)aminophenol (LH1), 5-bromo-2-(pyrrole-2-yl-methylidine)aminophenol (LH2) and 5-nitro-2-(pyrrole-2-yl-methylidine)aminophenol (LH3)). The hybrid materials were characterized on the basis of elemental analyses, TEM, IR, UV–visible, 1H NMR, and 31P NMR spectral studies. TEM overview observations revealed well-dispersed spherical nanoparticles of ~60 nm are formed. Quasireversible redox behavior is observed for CuII/RuII complexes corresponding to CuI/CuII and RuII/RuIII couples. All the complexes exhibit blue-green emission as a result of fluorescence from the intraligand (π → π*) emission excited state with good quantum yield. The second-order nonlinear optical (NLO) properties of CuII/RuII and CdII/RuII complexes have been investigated by the Kurtz-powder method. The second harmonic generation efficiency of these complexes show that these complexes are NLO active and display good second-order nonlinear optical activity.  相似文献   

3.
Reactions of ferrocenoylacetone with 2-(aminomethyl)pyridine and N-(2-hydroxyethyl)-1,2-diaminoethane afford the multidentate enaminones HL1 and H3L2, respectively. Reactions of copper acetate with the two enaminones generate the corresponding mixed-ligand complexes I and II, which are formulated as [CuL1(OAc)] and [Cu(H2L2)(OAc)], respectively. The structures of HL1, I and II have been determined by single-crystal X-ray crystallography. In complex I, HL1 acts as a monoanionic tridentate donor via the carbonyl oxygen, deprotonated enamine nitrogen and pyridyl nitrogen atoms, the acetate anion is monodentate and the coordination geometry of the central metal is square planar. In complex II, H3L2 is a monoanionic tetradentate ligand via the carbonyl oxygen, deprotonated enamine nitrogen, secondary amine nitrogen and hydroxy oxygen atoms, the acetate anion is monodentate and the coordination geometry of the central metal is a distorted trigonal bipyramid.  相似文献   

4.
Four CuII and CoII complexes–[Cu(L1)Cl2(H2O)]3/2H2O · 1/2EtOH, [Cu(L1)2Cl2]6H2O, [Co(L1)Cl2]3H2O · EtOH, and [Co2(L1)(H2O)Cl4]1.5H2O · EtOH (L1 = 2,4,6-tri(2-pyridyl)-1,3,5-triazine; TPT)–were synthesized by conventional chemical method and used to synthesize another four metal complexes–[Cu(L1)I2(H2O)]6H2O, [Cu(L1)2I2]6H2O, [Co(L1)I(H2O)2]I · 2H2O, and [Co2(L1)I4(H2O)3]–using tribochemical reaction, by grinding it with KI. Substitution of chloride by iodide occurred, but no reduction for CuII or oxidation of CoII. Oxidation of CoII to CoIII complexes was only observed on the dissolution of CoII complexes in d6-DMSO in air while warming. The isolated solid complexes (CuII and CoII) have been characterized by elemental analyses, conductivities, spectral (IR, UV-Vis, 1H-NMR), thermal measurements (TGA), and magnetic measurements. The values of molar conductivities suggest non-electrolytes in DMF. The metal complexes are paramagnetic. IR spectra indicate that TPT is tridentate coordinating via the two pyridyl nitrogens and one triazine nitrogen forming two five-membered rings around the metal in M : L complexes and bidentate via one triazine nitrogen and one pyridyl nitrogen in ML2 complexes. In binuclear complexes, L is tridentate toward one CoII and bidentate toward the second CoII in [Co2(L1)Cl4]2.5H2O · EtOH and [Co2(L1)I4(H2O)3]. Electronic spectra and magnetic measurements suggest a distorted-octahedral around CuII and high-spin octahedral and square-pyramidal geometry around CoII.  相似文献   

5.
Two mononuclear copper(II) complexes [Cu(L)(NO2)](ClO4) (1) and [Cu(L)(MO4)]2· 5H2O (2) (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane) have been synthesized and their structures determined. Both compounds show a distorted square-pyramidal geometry with the two secondary and two tertiary amines of the macrocycle and one ligand coordinated at the axial position. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the organic ligands.  相似文献   

6.
Mixed-ligand metal complexes based on ethanolamines and simple monosubstituted benzoic acids, in particular, mono- and binuclear copper complexes with monoethanolamine (MEA) and p-nitrobenzoic acid (PNBA), [Cu2+((PNBA)2 -(MEA)2)] (I) and [2Cu2+((PNBA)4 -(MEA)2(H2O)2)] (II), were prepared for the first time. The structures of the complexes were characterized by FT IR spectroscopy and X-ray diffraction (CIF files CCDC no. 1497849 (I) and no. 1497848 (II)). The doubly charged copper ions are coordinated at the vertices of octahedra, which are highly distorted due to the Jahn–Teller effect. In the crystals of the mononuclear complex I, the molecules are joined into columns, whereas in the binuclear compound II, a three-dimensional framework is formed owing to intermolecular H-bonds involving the nitro group. Fungicidal activities were found for compounds I, II, MEA, PNBA, previously obtained single-ligand copper complexes with MEA and PNBA, and MEA- and PNBA-based organic salt. The biological activity gradually increases in the series: ligand, single-ligand metal complex, organic salt, mono- and binuclear mixed-ligand complex, i.e., some ligands and copper ions show a synergistic effect.  相似文献   

7.
Two new linear CuII complexes [Cu(L1)2] (I) (HL1 = (E)-3,5-dichloro-2-hydroxy benzaldehyde O-methyl oxime) and [Cu(L2)2] (II) (HL2 = (E)-3,5-dichloro-2-hydroxy benzaldehyde O-ethyl oxime) are synthesized and characterized by elemental analysis, IR, UV-Vis, and X-ray diffraction methods. X-ray crystallographic analyses indicate that complexes I and II have a similar structure consisting of one CuII ion and two L units. In the complexes, the CuII ion lying on an inversion centre is four-coordinated in a trans-CuN2O2 square planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate oxime-type ligands. However, the crystal structure of the two complexes is different: complex I forms an infinite three-dimensional supramolecular network structure through intermolecular hydrogen bonding and π...π interaction, while complex II forms an infinite one-dimensional supramolecular structure through intermolecular hydrogen bonds.  相似文献   

8.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

9.
This paper discusses coordination-position isomeric MIICuII and CuIIMII complexes, using unsymmetric dinucleating macrocycles (Lm;n)2− ((L2;2)2−, (L2;3)2− and (L2;4)2−) that comprise two 2-(N-methyl)-aminomethyl-6-iminomethyl-4-bromo-phenonate entities, combined through the ethylene chain (m = 2) between the two amine nitrogens and through the ethylene, trimethylene or tetramethylene chain(n = 2, 3 or 4) between the two imine nitrogens. The macrocycles have dissimilar N(amine)2O2 and N(imine)2O2 metal-binding sites sharing the phenolic oxygens. The reaction of the mononuclear CuII precursors, [Cu(L2;2)], [Cu(L2;2)] and [Cu(L2;2)], with a MII perchlorate and a MII acetate salt formed (acetato)MIICuII complexes: [CoCu(L2;2)(AcO)]ClO4·0.5H2O] (1), [NiCu(L2;2) (AcO)]ClO4 (2), [ZnCu(L2;2) (AcO)]ClO4 (3), [CoCu(L2;3)(AcO)]ClO4·0.5H2O (4), [NiCu(L2;3)(AcO)]ClO4 (5), [ZnCu(L2;3)(AcO)]ClO4·0.5H2O (6), [CoCu(L2;4)(AcO)(DMF)]ClO4 (7), [NiCu(L2;4) (AcO)]ClO4·2DMF (8) and [ZnCu(L2;4)(AcO)]ClO4 (9) (the formulation [MaMb (Lm;n)]2+ means that Ma resides in the aminic site and Mb in the iminic site). The site selectivity of the metal ions is demonstrated by X-ray crystallographic studies for 2·MeOH,3,5,7, and9. An (acetato)CuIIZnII complex, [CuZn(L2;3)(AcO)]ClO4 (10), was obtained by the reaction of [PbCu(L2;3)]-(ClO4)2 with ZnSO4·4H2O, in the presence of sodium acetate. Other complexes of the CuIIMII type were thermodynamically unstable to cause a scrambling of metal ions. The Cu migration from the iminic site to the aminic site in the synthesis of10 is explained by the ‘kinetic macrocyclic effect’. The coordination-position isomers,6 and10, are differentiated by physicochemical properties.  相似文献   

10.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

11.
Two copper(I) iodide complexes, [Cu4(Metu)6I4] (I) and [Cu8(Diaz)12I8] (II) (Metu = N-methylthiourea; Diaz = 1,3-diazinane-2-thione), have been prepared and their structures been determined by X-ray crystallography. The crystal structures show that complex I is a tetranuclear, while II is an octanuclear cluster, both having a Cu : S ratio of 2 : 3, characteristic of metallothioneins. In I, each of the four copper atoms is coordinated to three thiourea ligands and one iodide ion in a distorted tetrahedral mode adopting admantane-like structure. In II, four types of core arrangements are observed around copper(I), which include, Cu(μ-S2)I2, Cu(μ-S2)(μ-I)I, Cu(μ-S3)I, and Cu(μ-S3)S each having copper(I) tetrahedrally coordinated. The complexes were also characterized by IR and 1H and 13C NMR spectroscopy.  相似文献   

12.
The title coordination polymer, poly[(μ4‐2‐oxidoisophthalato‐κ6O1,O2:O2,O3:O3′:O3′)(μ2‐quinoxaline‐κ2N:N′)copper(I)copper(II)], [Cu2(C8H3O5)(C8H6N2)]n, contains two crystallographically distinct Cu ions, one quinoxaline (QA) unit and one 2‐oxidoisophthalate trianion (L) derived from 2‐hydroxyisophthalic acid (H3L). The CuII ion is strongly coordinated by four O atoms in a distorted square geometry, of which two belong to two phenoxide groups and the other two to carboxylate groups of two L ligands. In addition, the CuII cation interacts weakly with a symmetry‐related carboxylate O atom which belongs to the L ligand in an adjacent layer, giving a square‐pyramidal coordination geometry. The CuI ion is trigonally coordinated by two N atoms from two QA molecules and one O atom from an L carboxylate group. The CuI centres are bridged by QA ligands to give a chain along the c axis. Two CuII ions and two L ligands form a [Cu2L2]2− `metallo‐ligand', which coordinates two CuI ions. Thus, the chains of CuI and QA are linked by the [Cu2L2]2− metallo‐ligand to yield a two‐dimensional (6,3) sheet. These sheets are further linked by symmetry‐related carboxylate O atoms of neighbouring layers into a three‐dimensional framework. The in situ reaction from benzene‐1,2,3‐tricarboxylic acid (H3L1) to L in the present system has rarely been observed before, although a few novel in situ reactions, such as ligand oxidative coupling, hydrolysis and substitution, have been observed during the hydrothermal process.  相似文献   

13.
A series of square-pyramidal copper(II) complexes, [Cu(LSe)(NN)] (H2LSe = seleno-bisphenolate; NN = bipyridyl, phenanthroline or N,N-dimethylethylenediamine) have been synthesized and characterized by elemental analyses, magnetic measurements, IR, EPR, and electronic spectral studies. Single crystal X-ray structures of [Cu(LSe)(bpy)]·H2O (2), [Cu(LSe)(phen)]·CH2Cl2 (3) and [Cu(LSe)(N,N-Me2en)] (4) showed that all the complexes have approximately square-pyramidal geometry. In complexes 2 and 3, the square plane is occupied by O(1), O(2), N(1) and N(2) and the apical position by Se atom of LSe 2− ligand. The asymmetric unit of complex 4 contains two crystallographically independent discrete molecules A and B with CuN2OSe chromophore comprising the square plane and the axial position being occupied by another phenolate oxygen atom. Complexes 2, 3 and 4 are found to be paramagnetic and EPR parameters extracted are: g = 2.232, g = 2.069; 〈geff〉 = 1.95; and g = 2.232, g = 2.083 for complexes 2, 3 and 4, respectively. Both the complexes 2 and 4 show three reduction processes: (a) a quasi-reversible reduction of CuII to CuI, (b) an irreversible reduction of CuI to Cu0 with the release of free ligand, and (c) a reduction process occurs at this coordinated ligand. They also show a well-defined quasi-reversible oxidation of CuII to CuIII and an irreversible oxidation peak at ∼1.30 and 1.40 V vs. Ag/AgCl for 4 and 2, respectively, with no cathodic counterpart, and were attributed to the oxidation of the metal coordinated ligand.  相似文献   

14.
2-[(2-Hydroxyphenylimino)methyl]phenol (H2L1) and 1-[(2-hydroxyphenylimino)methyl]naphthalen-2-ol (H2L2) reacted with copper(II) acetate hydrate and sulfanilamide (Sf1), sulfathiazole (Sf2), sulfaethidole (Sf3), sulfadiazine (Sf4), and sulfadimidine (Sf5) in ethanol to give mixed-ligand copper chelates with the composition Cu(Sf1–5)(L1–2) · n H2O (n = 1, 2). All these complexes are monomeric. Salicylaldehyde imines (H2L1 and H2L2) behave as doubly deprotonated tridentate O,N,O ligands, whereas sulfanilamides (Sf1–5) are unidentate ligands. Thermolysis of the synthesized complexes includes dehydration at 70–90°C, followed by complete thermal decomposition (290–380°C). The complexes [Cu(Sf1)(L1)] · 2H2O and [Cu(Sf3)(L1)] · H2O at a concentration of 10−4 M inhibited growth and reproduction of 100% of human myeloid leukemia cells (HL-60). The inhibitory effect was 90 and 75%, respectively, at a concentration of 10−5 M, whereas no antitumor activity was observed at a concentration of 10−6 M.  相似文献   

15.
Copper(II) macrocyclic complexes have been synthesized with five novel ligands: L1-1,7,10,16-tetraaza-2,6,11,15-tetraone-4,13-dithiacycloocta-decane, L2-1,7,11,17-tetraaza-2,6,12,16-tetraone-4,14-dithia-cyclocosane, L3-1,7,10, 13,19,22-hexaaza-2,6,14,18-tetraone-4,16-dithiacyclo-tetracosane, L4-1,7,14,20,tetraaza-2,6,15,19-tetraone-4,17,di- thiatricyclo [22, 4, O21,26, O8,13] hexacosa-8,10,12,21,23,25-hexene, L5- 1,7,13,19,25,26-hexaaza-2,6,14,18 tetraone-4,16 dithia tricyclo [23, 3, 1, I8,12] hexacosa [8(26), 10, 12, 20(25), 22, 24] hexane and characterized by elemental analysis, molar conductance, magnetic susceptibility, i.r, u.v.–vis, EPR spectral studies, thermal studies and electrochemical properties. The molar conductance measurements of the complexes in DMSO correspond to 1:2 electrolytes. g-Values are calculated for all of the complexes in the polycrystalline form as well as in DMSO solution. On the basis of i.r, electronic and EPR spectral studies a square planar geometry has been assigned to these complexes. Cyclic voltammograms for all the complexes are similar to quasi-reversible redox processes CuIICuII⇆CuIICuI⇆CuICuI. The complexes were also evaluated against the growth of bacteria (S. fecalis and E.coli) in vitro. An erratum to this article is available at .  相似文献   

16.
The oxidative stress that arises from the catalytic reduction of dioxygen by CuII/I‐loaded amyloids is the major pathway for neuron death that occurs in Alzheimer’s disease. In this work, we show that bis‐8(aminoquinoline) ligands, copper(II) specific chelators, are able to catalytically extract CuII from Cu–Aβ1–16 and then completely release CuI in the presence of glutathione to provide a CuI–glutathione complex, a biological intermediate that is able to deliver copper to apo forms of copper–protein complexes. These data demonstrate that bis‐8(aminoquinolines) can perform the transfer of copper ions from the pathological Cu–amyloid complexes to regular copper–protein complexes. These copper‐specific ligands assist GSH to recycle CuI in an AD brain and consequently slow down oxidative damage that is due to copper dysregulation in Alzheimer’s disease. Under the same conditions, we have shown that the copper complex of PBT2, a mono(8‐hydroxyquinoline) previously used as a drug candidate, does not efficiently release copper in the presence of GSH. In addition, we report that GSH itself was unable to fully abstract copper ions from Cu–β‐amyloid complexes.  相似文献   

17.
The distorted trigonal‐bipyramidal CuII complex [Cu(L1)(NCCH3)]2+ of the novel tetradentate bispidine‐derived ligand L1 with four tertiary amine donors (L1=1,5‐diphenyl‐3‐methyl‐7‐(1,4,6‐trimethyl‐1,4‐diazacycloheptane‐6‐yl)diazabicyclo[3.3.1]nonane‐9‐one) is a very efficient catalyst for the aziridination of olefins in the presence of a nitrene source. In agreement with the experimental data (in situ spectroscopy, product distribution, and its dependence on the geometry of the substrate and of the nitrene source), a theoretical analysis based on DFT calculations indicates that the active catalyst has the Cu center in its +II oxidation state, that electron transfer is not involved, and that the conversion of the olefin to an aziridine is a stepwise process involving a radical intermediate. The striking change of efficiency and reaction mechanism between classical copper–bispidine complexes and the novel L1‐based catalyst is primarily attributed to the structural variation, enforced by the ligand architecture.  相似文献   

18.
The Cambridge Crystallographic Database (CSD) shows [CuIIL4]2+ complexes, L = acyclic amine, fitting well with theoretically calculated structures to describe a planar-to-flat tetrahedral transformation pathway. Statistically, the CuII “planar” coordination sphere shows two distinct sets of trans N–Cu–N bond angles, 180° and near 150°, with the latter somewhat energetically favored according to DFT results. The planar structure is not confirmed theoretically when an example of these molecules in the CSD is geometrically minimized, suggesting that crystallographic or packing forces help to generate the planar structure in the crystal. Results of energy calculations from DFT seem to explain this feature. Less planar and more tetrahedral examples in the CSD are also found and compare well with theoretically converged related molecules. Trans N–Cu–N bond angles near 130° seem feasible for both CuI and CuII coordination spheres. These copper complexes having the copper coordination sphere in a less tetrahedral geometry are suggested as potential alternative models for blue proteins, and they deserve further exploration.  相似文献   

19.
The synthesis, reduction, optical and e.p.r. spectral properties of a series of new binuclear copper(II) complexes, containing bridging moieties (OH, MeCO2 , NO2 , and N3 ), with new proline-based binuclear pentadentate Mannich base ligands is described. The ligands are: 2,6-bis[(prolin-1-yl)methyl]4-bromophenol [H3L1], 2,6-bis[(prolin-1-yl)methyl]4-t-butylphenol [H3L2] and 2,6-bis[(prolin-1-yl)methyl]4-methoxyphenol [H3L3]. The exogenous bridging complexes thus prepared were hydroxo: [Cu2L1(OH)(H2O)2] · H2O (1a), [Cu2L2(OH)(H2O)2] · H2O (1b), [Cu2L3(OH)(H2O)2] · H2O (1c), acetato [Cu2L1(OAc)] · H2O (2a), [Cu2L2(OAc)] · H2O (2b), [Cu2L3(OAc)] · H2O (2c), nitrito [Cu2L1(NO2)(H2O)2] · H2O (3a), [Cu2L2(NO2)(H2O)2] · H2O (3b), [Cu2L3(NO2)(H2O)2] · H2O (3c) and azido [Cu2L1(N3)(H2O)2] · H2O (4a), [Cu2L2(N3)(H2O)2] · H2O (4b) and [Cu2L3(N3)(H2O)2] · H2O (4c). The complexes were characterized by elemental analysis and by spectroscopy. They exhibit resolved copper hyperfine e.p.r. spectra at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. The strength of the antiferromagnetic coupling lies in the order: NO2 N3 OH OAc. Cyclic voltammetry revealed the presence of two redox couples CuIICuII CuIICuI CuICuI. The conproportionality constant K con for the mixed valent CuIICuI species for all the complexes have been determined electrochemically.  相似文献   

20.
New copper(II) complexes, [Cu2L1L2] · ClO4 (I) and [Ni(L3)2] (II), where L1 is the monoanionic form of 2-[1-(2-emthylaminoethylimino)ethyl]phenol, L2 is the dianionic form of N,N′-ethylene-bis(2-hydroxyacetophenonylideneimine), L3 is the mono-anionic form of 2-(1-iminoethyl)phenol, were prepared and characterized using elemental analysis, FT-IR spectroscopy, and X-ray single-crystal diffraction. In complex I, the Cu(1) atom is coordinated by the NNO tridentate ligand L1 and the two phenolate O atoms of L2, forming a square pyramidal geometry. The Cu(2) atom in complex I is coordinated by the NNOO tetradenate ligand L2, forming a square planar geometry. The Ni atom in complex II is coordinated by two phenolate O and two imine N atoms from two ligands L3, forming a square planar geometry. In the crystal structure of I, the perchlorate anions are linked to the dinuclear copper(II) complex cations through intermolecular N-H...O hydrogen bonds. In the crystal structure of II, the mononuclear nickel complex molecules are linked through intermolecular N-H...O hydrogen bonds, forming a trimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号