首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Silica sol-gel (SG) films with templated pores were deposited on glassy carbon (GC) electrodes by an electrochemically initiated process. Generation-4 poly(amidoamine), PAMAM, dendrimer was included in the tetraethoxysilane precursor to facilitate pore formation. The PAMAM adsorbs to the GC, which blocks SG formation at those sites on the electrode. The pore size was 10 ± 5 nm. After removal of the PAMAM, cyclic voltammetry of Fe(CN)6 3− and Ru(NH3)6 3+ at pH 6.2 showed that the residual negative charge on the silica attenuated the current for the former and increased the current for the latter, presumably by electrostatic repulsion and ion-exchange preconcentration, respectively. This premise was supported by repeating the measurements at the isoelectric point. Methylation of the silanol sites was used to eliminate the charge of the SG. At the end-capped SG, the voltammetry of Fe(CN)6 3− and Ru(NH3)6 3+ yielded currents that were independent of pH over the range 2.1 to 7.2. Circumventing the need for the silanization by using (3-glycidyloxypropyl)trimethoxysilane as the sol-gel precursor failed because the oxygen plasma treatment to remove the PAMAM attacked the organically modified sol-gel backbone. The resulting modified electrode mitigated the influence of proteins on the voltammetry of test species and stabilized functionalize nanoparticle catalysts under hydrodynamic conditions.

  相似文献   

2.
Silica sol-gel (SG) films with templated pores were deposited on glassy carbon (GC) electrodes by an electrochemically initiated process. Generation-4 poly(amidoamine), PAMAM, dendrimer was included in the tetraethoxysilane precursor to facilitate pore formation. The PAMAM adsorbs to the GC, which blocks SG formation at those sites on the electrode. The pore size was 10?±?5?nm. After removal of the PAMAM, cyclic voltammetry of Fe(CN)6 3? and Ru(NH3)6 3+ at pH?6.2 showed that the residual negative charge on the silica attenuated the current for the former and increased the current for the latter, presumably by electrostatic repulsion and ion-exchange preconcentration, respectively. This premise was supported by repeating the measurements at the isoelectric point. Methylation of the silanol sites was used to eliminate the charge of the SG. At the end-capped SG, the voltammetry of Fe(CN)6 3? and Ru(NH3)6 3+ yielded currents that were independent of pH over the range 2.1 to 7.2. Circumventing the need for the silanization by using (3-glycidyloxypropyl)trimethoxysilane as the sol-gel precursor failed because the oxygen plasma treatment to remove the PAMAM attacked the organically modified sol-gel backbone. The resulting modified electrode mitigated the influence of proteins on the voltammetry of test species and stabilized functionalize nanoparticle catalysts under hydrodynamic conditions.  相似文献   

3.
Porphycene was covalently immobilized in a sol-gel silica film deposited on a glass plate, and the immobilized porphycene showed a photosensitizing property with recycling for the photo-oxidation of 1,5-dihydroxynaphthalene.  相似文献   

4.
Sol-gel silica thin films, produced by a dip-coating process, were impregnated with the complexes Ru(bpy) 3 2+ and Ru(Ph2phen) 3 2+ . For each complex ruthenium fluorescence was quenched in the presence of oxygen. Intensity and decay time Stern-Volmer plots were produced for both complexes. The optical decay times were analysed in terms of one quenched and one unquenched component, the latter arising from the fraction of complex molecules which are inaccessible to oxygen. All the data were consistent with the predominance of dynamic quenching in these systems. The feasibility of an oxygen sensor based on decay times was discussed.  相似文献   

5.
Since we observed that dendron-assembled surface provided high single nucleotide polymorphism discrimination efficiency for DNA microarrays, and that the binding yield for streptavidin increased when biotin was immobilized on top of it, the nanoscale-controlled surface is examined for surface plasmon field-enhanced fluorescence spectroscopy (or SPFS). Firstly, a silica film was coated onto a gold substrate using the sol-gel technique, followed by the covalent immobilization of a layer of second-generation dendrons with a DNA catcher strand at their apex. The thickness of the inorganic interlayer (d=33 nm) was effectively suppressing fluorescence quenching. Thus, the kinetics and affinity characteristics of DNA hybridization could be investigated very sensitively by SPFS. The kinetic rate constants found for DNA hybridization on the dendron-modified surface were larger than those reported for a streptavidin-modified surface by one order of magnitude, except for dissociation rate constant for a single mismatched case. In addition, we observed that the DNA on the cone-shaped linker maintained its capability to capture DNA target strands even after extended storage at ambient conditions.  相似文献   

6.
Substituted azobenzene molecules (DR1, DO3, DR17, DY7, Magneson1, DR19C1 and DR19CICI) are grafted onto a silicon alkoxide precursor. Films are prepared by the sol-gel process. We have conducted preliminary optical experiments with DR1 and DO3 functionalized oxide gels. Optical information is written on the sol-gel film via the trans-cis-trans photoisomerization process with a polarized argon laser beam and read with a low power He-Ne laser. A stable signal (up to 60% of the maximum birefringence) is read a long time after the writing beam had been turned off. This shows the ability of the azo oxide gels to store optical information.  相似文献   

7.

Silica sol-gel matrices and its organically modified analogues that contain aqueous electrolytes, ionic liquids, or other ionic conductors constitute stand-alone solid-state electrochemical cells when hosting electrodes or serve as modifying films on working electrodes in conventional cells. These materials facilitate a wide variety of analytical applications and are employed in various designs of power sources. In this review, analytical applications are the focus. Solid-state cells that serve as gas sensors, including in chromatographic detectors of gas-phase analytes, are described. Sol-gel films that modify working electrodes to perform functions such as hosting electrochemical catalysts and acting as size-exclusion moieties that protect the electrode from passivation by adsorption of macromolecules are discussed with emphasis on pore size, structure, and orientation. Silica sol-gel chemistry has been studied extensively; thus, factors that control its general properties as frameworks for solid-state cells and for thin films on the working electrode are well characterized. Here, recent advances such as the use of dendrimers and of nanoscale beads in conjunction with electrochemically assisted deposition of silica to template pore size and distribution are emphasized. Related topics include replacing aqueous solutions as the internal electrolyte with room-temperature ionic liquids, using the sol-gel as an anchor for functional groups and modifying electrodes with silica-based composites.

  相似文献   

8.
The effect of the temperature (of the substrate and the solution) during film deposition on spin coating process of sol-gel films is discussed. The increase of substrate temperature as well as coating solution liquid temperature leads to formation of thicker films with higher porosity. The temperature dependence of films thickness is mainly determined by the change of solvent vapour pressure with consideration for the change of liquid viscosity.  相似文献   

9.
A novel flexible free-standing films of polyvinyl alcohol (PVA)/silica polymer network dispersed cholesteric liquid crystals (CLC) have been prepared by the sol-gel process. In the hydrolysis of silicon alkoxides tetraethoxysilane (TEOS) processes, the silica having -OH with the -OH groups on PVA formed polymer networks with Si-O-C bonds by dehydration. The cholesteric liquid crystals were incorporated into the networks. The free-standing films were obtained by the spin-coating method. In order to improve the compatibility and microstructure of the cholesteric liquid crystals with PVA/silica polymer networks, the amphiphilic compound of hexadecyl trimethyl ammonium bromide (HDTMA) was introduced into the forming film solutions. Effects of the different ratios of raw materials on the structure of films were investigated. The microscopic morphology of free-standing films and the uniform dispersion of CLCs in the films have been characterized by polarizing optical microscopy (POM), the field emission scanning electron microscope (FESEM), Fourier transform infrared (FT-IR) spectrometer and atomic force microscope (AFM). The free-standing films exhibiting excellent CLC droplets dispersion, mechanical stability, and good flexibility could be useful for flexible displays, switchable optical elements and smart windows.  相似文献   

10.
Pyrolysis study of fluorinated sol-gel silica   总被引:1,自引:0,他引:1  
Fluorinated silica gels at various fluorine content were prepared via sol-gel by hydrolysis of 3,3,3-trifluoropropyltrimethoxysilane and tetraethoxysilane mixtures. The gels, of nominal stoichiometry Si(CH2CH2CF3)XO(2-X/2)(X=0.1-1), were characterized by FT-IR, X-ray photoelectron spectroscopy (XPS) and N2 adsorption analysis. The thermal stability of the fluorinated samples was investigated by coupling thermogravimetric measurements with mass spectrometric and gas chromatographic analyses of the evolved gaseous species. The chemical reactions occurring in the gel matrices during heating were siloxane chain rearrangements involving condensation between residual hydroxyl and ethoxyl groups in the 100-350°C temperature range, whereas the thermal decomposition of the fluoroalkyl groups were observed at higher temperatures (450-600°C). The release of the fluoroalkyl moieties also involved C-F/Si-O bond exchanges inside the siloxane chains, with gas-phase evolution of different fluorinated silicon units. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Jin G  Zhang B  Tang Y  Zuo X  Wang S  Tang J 《Talanta》2011,84(3):644-650
A triazolam-imprinted silica microsphere was prepared by combining a surface molecular-imprinting technique with the sol-gel process. The results illustrate that the triazolam-imprinted silica microspheres provided using γ-aminopropyltriethoxysilane and phenyltrimethoxysilane as monomers exhibited higher selectivity than those provided from γ-aminopropyltriethoxysilane and methyltriethoxysilane. In addition, the optimum affinity occurred when the molar ratio of γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, and the template molecule was 4.2:4.7:0.6. Retention factor (k) and imprinting factor (IF) of triazolam on the imprinted and non-imprinted silica microsphere columns were characterized using high performance liquid chromatography (HPLC) with different mobile phases including methanol, acetonitrile, and water solutions. The molecular selectivity of the imprinted silica microspheres was also evaluated for triazolam and its analogue compounds in various mobile phases. The better results indicated that k and IF of triazolam on the imprinted silica microsphere column were 2.1 and 35, respectively, when using methanol/water (1/1, v/v) as the mobile phase. Finally, the imprinted silica was applied as a sorbent in solid-phase extraction (SPE), to selectively extract triazolam and its metabolite, α-hydroxytriazolam, from human urine samples. The limits of detection (LOD) for triazolam and α-hydroxytriazolam in urine samples were 30 ± 0.21 ng mL−1 and 33 ± 0.26 ng mL−1, respectively.  相似文献   

12.
Silver-doped silica was prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS, Si(OC2H5)4) in the presence of a silver nitrate (AgNO3) solution by two different synthesis methods. In the first synthesis route, sol-gel mixtures were prepared using an acid catalyst. In the second synthesis route, silver-doped silica gels were formed by two-step acid/base catalysis. For the same concentration of silver dopant [AgNO3]/[TEOS] = 0.015 acid-catalyzed sol-gel formed a microporous silica with an average pore size of <25 Å whereas the two-step catalyzed silica had an average pore size of 250 Å and exhibited a mesoporous structure when fully dried. The differences in the pore size affected the silver particle formation mechanism and post-calcination silver particle size. After calcination at 800 °C for 2 h the acid-catalyzed silica contained metallic silver particles size with an average particle size of 24 ± 2 nm whereas two-step catalyzed silica with the same concentration of [AgNO3]/[TEOS] = 0.015 contained silver nanoparticles with an average size of approximately 32 ± 2 nm. Mechanisms for silver particle formation and for silica matrix crystallization with respect to the processing route and calcination temperature are discussed.  相似文献   

13.
基于溶胶-凝胶技术的丁氯喘电极   总被引:3,自引:0,他引:3  
报导了一种以硅钨酸为活性物质 ,用溶胶 凝胶技术制做的新型丁氯喘电极。电极有良好的能斯特响应。斜率为 5 5mV以上 ,线性范围为 1 .0× 1 0 -1~5 .0× 1 0 -5mol L ,检测下限为 2 .0× 1 0 -5mol L ,适宜的pH为 4.2~ 8.7。  相似文献   

14.
Silica xerogels were synthesized and annealed at 1000 degrees C for different durations to yield stable silica materials. The samples were prepared through base-catalyzed hydrolysis and condensation of tetramethyl orthosilicate in methanol. After aging and drying steps, clear and solid xerogels exhibiting a narrow pore size distribution were achieved. The annealing treatment of these xerogels was performed at 1000 degrees C and proved in the present study to lead to a monolithic glass when a progressive heat-treatment procedure was employed to attain 1000 degrees C. In addition to the expected glass, silica foams and ordered phases were observed when the samples were instantaneously heat-treated at 1000 degrees C. Raman spectra of the foamed materials exhibit the classical features of amorphous silica, whereas transmission electronic microscopy pictures reveal the presence of crystallized domains within the vitreous matrix. These crystallites are prone to nucleation and growth processes, which jeopardize the believed stability of the silica foam. The assessment of the hydroxyl content by IR spectroscopy reveals the role played by the latter polycondensation of silanols. The occurrence of foaming process was thus found to result from two competitive phenomena occurring at 1000 degrees C: evacuation of water-related species and viscous sintering.  相似文献   

15.
利用溶胶 凝胶法制备壳聚糖 二氧化硅有机无机复合杂化膜,用于对辣根过氧化酶进行固定,制得测定H2O2的电流型生物传感器。以1mmol/LK4Fe(CN)6作为电子媒介体。研究了各种因素如壳聚糖与二氧化硅的比率、pH、温度、工作电位等对传感器响应电流的影响。计时电流法测定H2O2的线性范围为2.0×10-6~6.8×10-4mol/L,检出限为8.0×10-7mol/L。测得酶催化动力学参数米氏常数Km=0 87mmol/L。用该法对实际样品进行了测定。  相似文献   

16.
Using liposome to shield an enzyme from hostile chemical environments during the sol-gel formation process has resulted in a novel approach to synthesizing silica sol-gel biocomposite materials. By reporting the encapsulation of horseradish peroxidase and firefly luciferase, we demonstrate that this new protocol can produce silica biocomposites that are more active than trapping the enzymes directly into hydrogels.  相似文献   

17.
The present state of our knowledge on sol-gel coating films has been reviewed. A qualitative discussion is made on the limit of the film thickness which can be achieved in the sol-gel method and the factors affecting the film thickness. Considering that properties of the film are intimately related to the microstructure, types of microstructures accomplished by the sol-gel coating are introduced with examples.  相似文献   

18.
Hydrophobic silica aerogels have been prepared using the rapid supercritical extraction (RSCE) technique. The RSCE technique is a one-step methanol supercritical extraction method for producing aerogel monoliths in 3 to 8 h. Standard aerogels were prepared from a tetramethoxysilane (TMOS) recipe with a molar ratio of TMOS:MeOH:H2O:NH4OH of 1.0:12.0:4.0:7.4 × 10−3. Hydrophobic aerogels were prepared using the same recipe except the TMOS was replaced with a mixture of TMOS and one of the following organosilane co-precursors: methytrimethoxysilane (MTMS), ethyltrimethoxysilane (ETMS), or propyltrimeth-oxysilane (PTMS). Results show that, by increasing the amount of catalyst and increasing gelation time, monolithic aerogels can be prepared out of volume mixtures including up to 75% MTMS, 50% ETMS or 50% PTMS in 7.5–15 h. As the amount of co-precursor is increased the aerogels become more hydrophobic (sessile tests with water droplets yield contact angles up to 155°) and less transparent (transmission through a 12.2-mm thick sample decreases from 83 to 50% at 800 nm). The skeletal and bulk density decrease and the surface area increases (550–760 m2/g) when TMOS is substituted with increasing amounts of MTMS. The amount of co-precursor does not affect the thermal conductivity. SEM imaging shows significant differences in the nanostructure for the most hydrophobic surfaces.  相似文献   

19.
This paper describes progress towards a silica-on-silicon integrated optics technology based on sol-gel. In particular, the aim of this work is to use porous sol-gel films as a host for semiconductor microcrystallites, in order to achieve optical Kerr effect devices. Control of crystallite size is important to maximize the nonlinear effect, and also has a strong influence on band-gap, and thus the wavelength of operation. We are examining the control of pore size distribution, via sol-gel process parameters, as a means of setting crystallite size, and for this reason have developed a technique for the measurement of micropore distributions in films. Results of this technique are presented; these give the first detailed measurements of pores below 10 Å in diameter. The fabrication and measurement of initial doped films is described, giving strong evidence for quantum confinement.  相似文献   

20.
J Wang  M Ozsoz 《The Analyst》1990,115(6):831-834
The antihypertensive agents reserpine and rescinnamine were shown to be partitioned effectively into a lipid layer on a glassy carbon electrode. Such hydrophobic accumulation greatly enhances the sensitivity of the subsequent voltammetric scan, allowing convenient quantification of sub-micromolar concentrations. A high degree of selectivity is achieved as polar electroactive species are excluded by the hydrophobic layer. The drugs can therefore be quantified in the presence of a 100-fold amount of solution species with similar redox potentials. The response was evaluated with respect to accumulation time, concentration dependence, solution conditions, voltammetric waveform, possible interferences and other variables. Detection limits are 5 x 10(-9) M. The applicability of the method to selective measurements in untreated urine is described. The data shed new light on the sensing utility and discriminative properties of lipid electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号