首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We present an exact diagrammatic approach for the problem of dimer-dimer scattering in 3D for dimers being a resonant bound state of two fermions in a spin singlet state, with corresponding scattering length a. We recover exactly the previously known result a B = 0.60a, where a B is the dimer-dimer scattering length. A detailed discussion of how one can “sum all the diagrams” in this case is presented. Applications to the study of 4-particle bound states of various complexes in 2D are briefly presented.  相似文献   

2.
G. E. Volovik 《JETP Letters》2003,78(11):691-694
The left-right symmetric Pati-Salam model of the unification of quarks and leptons is based on the SU(4) and SU(2)×SU(2) symmetry groups. These groups are naturally extended to include the classification of families of quarks and leptons. We assume that the family group (the group which unites the families) is also the SU(4) group. The properties of the fourth generation of fermions are the same as those of the ordinary-matter fermions in the first three generations except for the family charge of the SU(4)F group: F=(1/3, 1/3, 1/3, ?1), where F=1/3 for fermions of ordinary matter and F=?1 for the fourth-generation fermions. The difference in F does not allow mixing between ordinary and fourth-generation fermions. Because of the conservation of the Fcharge, the creation of baryons and leptons in the process of electroweak baryogenesis must be accompanied by the creation of fermions of the fourth generation. As a result, the excess n B of baryons over antibaryons leads to the excess n=N?N? of neutrinos over antineutrinos in the fourth generation with n=n B . This massive neutrino may form nonbaryonic dark matter. In principle, the mass density of the fourth neutrino nm N in the Universe can make the main contribution to dark matter, since the lower bound on the neutrino mass m N from the data on decay of the Z bosons is m N <m Z /2. The straightforward prediction of this model leads to the amount of cold dark matter relative to baryons, which is an order of magnitude higher than allowed by observations. This inconsistency may be avoided by nonconservation of the F charge.  相似文献   

3.
We consider a model of electrodynamics with two types of interaction, the vector \((e\bar \psi (\gamma ^\mu A_\mu )\psi )\) and axial vector \((e_A \bar \psi (\gamma ^\mu \gamma ^5 B_\mu )\psi )\) interactions, i.e., with two types of vector gauge fields, which corresponds to the local nature of the complete massless-fermion symmetry group U(1) ? U A (1). We present a phenomenological model with spontaneous symmetry breaking through which the fermion and the axial vector field Bμ acquire masses. Based on an approximate solution of the Dyson equation for the fermion mass operator, we demonstrate the phenomenon of dynamical chiral symmetry breaking when the field Bμ has mass. We show the possibility of eliminating the axial anomalies in the model under consideration when introducing other types of fermions (quarks) within the standard-model fermion generations. We consider the polarization operator for the field Bμ and the procedure for removing divergences when calculating it. We demonstrate the emergence of a mass pole in the propagator of the particles that correspond to the field B03BC when chiral symmetry is broken and consider the problems of regularizing closed fermion loops with axial vector vertices in connection with chiral symmetry breaking.  相似文献   

4.
Experimental studies of the antiferromagnetic (AF) heavy fermion metal YbRh2Si2 in a magnetic field B indicate the presence of a jump in the Hall coefficient at a magnetic-field tuned quantum state in the zero temperature limit. This quantum state occurs at BBc0 and induces the jump even though the change of the magnetic field at B = Bc0 is infinitesimal. We investigated this by using the model of heavy electron liquid with the fermion condensate. Within this model, the jump takes place when the magnetic field reaches the critical value Bc0 at which the ordering temperature TN(B = Bc0) of the AF transition vanishes. We show that at BBc0, this second order AF phase transition becomes the first order one, making the corresponding quantum and thermal critical fluctuations vanish at the jump. At T → 0 and B = Bc0 the Grüneisen ratio as a function of the temperature T diverges. We demonstrate that both the divergence and the jump are determined by the specific low temperature behavior of the entropy \(S(T) \propto S_0 + a\sqrt T + bT\) with S0; a and b are temperature independent constants.  相似文献   

5.
We consider the model of a Fermi-Bose mixture with strong hard-core repulsion between particles of the same sort and attraction between particles of different sorts. In this case, in addition to the standard anomalous averages of the type 〈b〉, 〈bb〉, and 〈cc〉, pairing between fermions and bosons of the type 〈bc〉 is possible. This pairing corresponds to creation of composite fermions in the system. At low temperatures and equal densities of fermions and bosons, composite fermions are further paired into quartets. At higher temperatures, trios consisting of composite fermions and elementary bosons are also present in the system. Our investigations are important in connection with the recent observation of weakly bound dimers in magnetic and optical dipole traps at ultralow temperatures and with the observation of collapse of a Fermi gas in an attractive Fermi-Bose mixture of neutral particles.  相似文献   

6.
In this paper, based on a discussion about the Wigner-Yanase-Dyson (WYD) skew information, the measure Fa,α(ρab) for correlations in terms of the WYD skew information is introduced and discussed. The following conclusions are obtained. For a classical-quantum state ρab, Fa,α(ρab)=0 if and only if ρab is a product state; Fa,α(ρab) is locally unitary invariant and convex on the set of states with the fixed marginal ρa; Fa,α(ρab) decreases under local random unitary operation on Hb; For a quantum-classical state ρab, Fa,α(ρab) decreases under local operation on Hb; Lastly, Fa,α(ρab) is computed for the pure states and the Bell-diagonal states, respectively.  相似文献   

7.
We investigate the ground state properties of atoms, in which substitute fermions—electrons by bosons, namely, π?-mesons. We perform some calculations in the frame of modified Hartree–Fock (HF) equation. The modification takes into account symmetry, instead of antisymmetry of the pair identical bosons wavefunction. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms “by hand.” The contribution of meson–meson and meson–nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions Aπ-, pion atoms Aπ, and the number of extra bound pions ΔNπ increases with the nuclear charge Z. In particular, for Xe ΔNπ = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.  相似文献   

8.
We discuss Higgs boson decays in the CP-violating MSSM, and examine their phenomenological impact using cross section limits from the LEP Higgs searches. This includes a discussion of the full 1-loop results for the partial decay widths of neutral Higgs bosons into lighter neutral Higgs bosons (h a h b h c ) and of neutral Higgs bosons into fermions (\(h_{a} \to f \bar{f}\)). In calculating the genuine vertex corrections, we take into account the full spectrum of supersymmetric particles and all complex phases of the supersymmetric parameters. These genuine vertex corrections are supplemented with Higgs propagator corrections incorporating the full 1-loop and the dominant 2-loop contributions, and we illustrate a method of consistently treating diagrams involving mixing with Goldstone and Z bosons. In particular, the genuine vertex corrections to the process h a h b h c are found to be very large and, where this process is kinematically allowed, can have a significant effect on the regions of the CPX benchmark scenario which can be excluded by the results of the Higgs searches at LEP. However, there remains an unexcluded region of CPX parameter space at a lightest neutral Higgs boson mass of ~45 GeV. In the analysis, we pay particular attention to the conversion between parameters defined in different renormalisation schemes and are therefore able to make a comparison to the results found using renormalisation group improved/effective potential calculations.  相似文献   

9.
A theory is developed for fractional quantum Hall effect in terms of composite (c)-bosons (fermions) without useing Laughlin’s results about the fractional charge. Here the c-particle (fermion, boson) is defined as a bound composite fermion (boson) containing a conduction electron and an even (odd) number of fluxons (elementary magnetic fluxes). The Bose-condensed c-bosons, each containing an electron and an odd number m of fluxons at the filling factor ν=1/m is shown to generate the Hall conductivity plateau value m e 2/h, where the density of c-particles, \(n_{\phi }^{(m)}\), either bosonic or fermionic, with m fluxons is given by \(n_{\phi }^{(m)}=n_{\mathrm {e}}/m\), n e = electron density. The only assumption is that any c-fermion carries a charge magnitude equal to the electron charge e. The quantum Hall state is shown to be more stable at ν=1/3 than at ν=1.  相似文献   

10.
We derive a lower bound on the ground state energy of the Hubbard model for given value of the total spin. In combination with the upper bound derived previously by Giuliani (J. Math. Phys. 48:023302, [2007]), our result proves that in the low density limit the leading order correction compared to the ground state energy of a non-interacting lattice Fermi gas is given by 8π a ? u ? d , where ? u(d) denotes the density of the spin-up (down) particles, and a is the scattering length of the contact interaction potential. This result extends previous work on the corresponding continuum model to the lattice case.  相似文献   

11.
We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a 0 ? l P (where l P is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n F ) to energy density ε(n F ) dependent on the number density of fermions n F . As the early Universe expands, the dimensionless quantity ν(n F ) = P(n F )/ε(n F ) decreases with decreasing n F from its maximum value νmax = 1 for n F → ∞ to zero for n F → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n F )–ε(n F )–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R c =–μ2/ξ and radius a c ? a 0. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G N .  相似文献   

12.
A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.  相似文献   

13.
In the first part of the review we discuss the effective nonlocal approach in the quantum field theory. It concerns primary the historical retrospective of this approach, and than we concentrate on the interaction of matter particles (fermions and bosons) with the (abelian and nonabelian) gauge fields. In the second part of the review we consider the hadronic corrections (vacuum polarization) to the anomalous magnetic moment of the muon g - 2 factor discussed within the SUf(2) nonlocal chiral quark model. This is considered in the leading and, partially, in the next-to-leading orders (the effect of the fermion propagator dressing due to pion field) of expansion in small parameter 1/Nc (Nc is the number of colors in QCD).  相似文献   

14.
The energy levels of the fermions bound to the vortex are considered for vortices in the superfluid/superconducting systems that contain the symmetry protected plane of zeroes in the gap function in bulk. The Caroli–de Gennes–Matricon branches with different approach zero energy level at pz → 0. The density of states of the bound fermions diverges at zero energy giving rise to the \(\sqrt \Omega \) dependence of the density of states in the polar phase of superfluid 3He rotating with the angular velocity Ω and to the \(\sqrt B \) dependence of the density of states for superconductors in the (dxz + idyz)-wave pairing state.  相似文献   

15.
The hyperfine structure splittings of the electronic ground statea 4 F 9/2 in the Co59-I-spectrum have been measured with a magnetic atomic-beam resonance-apparatus. From these splittings the magnetic dipole and electric quadrupole interaction constants are found to beA (a 4 F /2)=(450,284±0,01) Mc/sec,B (a 4 F 9/2)= (139,63±0,5) Mc/sec. Taking into account the mixture of thea 4 F 9/2 state with states of the same 3d 7 4s 2-electron-configuration, an electric quadrupole moment of Co59 ofQ=(0,404±0,04) 10?24 cm2 was obtained. No Sternheimer-correction has been included.  相似文献   

16.
The cross sections for elastic and inelastic η-meson scattering on 7Li nuclei are obtained on the basis of the αt-cluster representation of the target nucleus. The experimentally known values of the parameters of elastic ηα and αt scattering are used in exactly solving three-body Faddeev equations with separable two-body potentials. The η7Li elastic-scattering scattering length found from respective calculations is aη7Li = ?0.310 ? i0.198 fm.  相似文献   

17.
18.
19.
Simple recurrence relations for the multiplicities of angular momenta are presented for a system of fermions or bosons with spinj. Tables are given for fermions withj=13/2 up to 19/2 and for bosons withj=2, 3, 4, 5 and 20 particles at most.  相似文献   

20.
The static model invariant under SU3 is discussed. The baryons and mesons are assigned according to the “eightfold way”, and the Low equation for the scattering matrix is derived. The scattering matric has been diagonalized for arbitrary mixing ofF- andD-type coupling and the crossing matrix has been calculated. To determine the mixing of the two couplings photoproduction cross sections have been calculated. From the comparison of theK + Λ andK + Σ0 production cross sections with experiment it follows that α=D/F=3.5. For this value of α the model predicts the 3/2 decublet resonance in very good agreement with the experimental situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号