首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The iron-atom concentration distribution as well as the gas-phase temperature was measured via laser-induced fluorescence (LIF) during iron-oxide nanoparticle synthesis in a low-pressure hydrogen/oxygen/argon flame reactor using ironpentacarbonyl (Fe(CO)5) as precursor. Temperature measurements based on multi-line NO-LIF imaging are used to correct for temperature-dependent ground-state populations. The concentration measurement is calibrated based on line-of-sight absorption measurements. The influence of the precursor on the flame is observed at precursor concentrations larger than 70 ppm as the flame front moves closer to the burner surface with increasing Fe(CO)5 concentration.  相似文献   

2.
Absolute CN and CH radical concentrations were determined in situ during the combustion of a graphite substrate in premixed, laminar, low-pressure, H2/O2 flames for two different equivalence ratios, = 1.0 and = 1.5. For CN measurements, a small amount of NO (1.8%) was added. The concentration of CN was measured by cavity ring-down spectroscopy (CRDS) probing the absorption of the P1,2 (13) in the B–X (0, 0) band at 388.1 nm, and the concentration of CH was measured by linear unsaturated laser-induced fluorescence (LIF) exciting the fluorescence of the R1 (4) in the B–X (0, 0) band at 387.4 nm. Temperature measurements were done based on LIF excitation spectra of OH in the A–X (0, 0) band. It was found that the graphite substrate reduces the flame temperature in the vicinity of its surface. The CN concentrations were found to be three times higher for the rich flame than for the stoichiometric flame. CH concentrations were slightly higher for the stoichiometric flame than for the rich flame. The observed CH/CN concentration ratio is substantially lower compared to NO-doped low-pressure CH4/O2 flames. The obtained quantitative information can serve as a first calibration point for detailed numerical simulations of the burning solid graphite, which are based on the concept of surface elementary reactions.  相似文献   

3.
Several temperature measurement techniques were compared for the investigation of fuel-rich, premixed, flat, low-pressure flames of propene, acetylene, and cyclopentene with maximum temperatures around 2400 K. Vibrational Stokes/anti-Stokes Raman measurements with a KrF excimer laser using CO, H2, and H2O as temperature indicators were examined at 50 and 200 mbar for different flame stoichiometries. Also, laser-induced fluorescence (LIF) of OH in the A-X band was used, and complementary lifetime measurements were performed to account for a variation of fluorescence quantum yield with rotational quantum number. LIF using seeded NO (0.2-1.0%) was applied both in point-wise and 1D temperature measurement in spite of the anticipated interaction of NO with the fuel-rich flame chemistry. Furthermore, thermocouple measurements were performed in the preheat zone. These techniques were compared with respect to accuracy and the potential for routine applications under fuel-rich low-pressure conditions.  相似文献   

4.
Two-dimensional rotational temperature measurement was performed in a stable combustion flame of premixed butane and oxygen using multiline laser induced fluorescence (LIF) of nitric oxide molecules. Multiple rotational absorption lines of A2+Π;X2II(0,0) Q1 and Q2 lines were excited by laser light around 226 nm, and the LIF signal was observed by an image-intensified digital camera. Temperature was determined through least squares fitting correlation between LIF intensity and excitation rotational quantum number for the Boltzmann distribution function. The measured LIF intensity was approximated by the Boltzmann distribution with good accuracy, and the temperature obtained was between 500 K and 1800 K for the test flame. The measuring error of the temperature was evaluated and found to be 80 K, which corresponded to 8% of the measured fluorescence intensity. The two-line LIF scheme was evaluated by different pairs of excitation lines (Q1(31.5)/Q1(16.5) and Q1(18.5)/Q1(16.5)) for comparison with the multiline LIF approach. Temperature which was obtained by two-line LIF scheme corresponded well with multiline LIF results for Q1(31.5)/Q1(16.5) excitation. However, for Q1(18.5)/Q1(16.5) excitation, the obtained temperature did not agree with the multiline LIF result because the population of rotational states J=18.5 and J=16.5 is similar at high temperatures. We found that two-line LIF temperature measurement was reliable when excitation lines were suitably selected.  相似文献   

5.
Using laser-induced fluorescence (LIF), spatially resolved concentration profiles of formaldehyde (H2CO) were obtained in the preheating zone of atmospheric-pressure premixed CH4/air flames stabilized on the central slot of a multiple-slot burner similar in construction to domestic boilers. The isolated pQ1(6) rotational line (339.23 nm) in the 21 041 0 vibronic combination transition in the ?1A2- 1A1 electronic band system around 339 nm was excited in the linear LIF intensity regime. For a quantification of quenching effects on the measured LIF signal intensities, relative fluorescence quantum yields were determined from direct fluorescence lifetime as a function of height above the slot exit. Absolute H2CO number densities in the flames were evaluated from a calibration of measured LIF signal intensities versus those obtained in a low-pressure sample with a known H2CO vapor pressure. Peak concentrations in the slightly lean and rich flames reached (994±298) and (174±52) ppm, respectively. Received: 25 September 2000 / Published online: 30 November 2000  相似文献   

6.
The combination of two-dimensional, planar laser-induced fluorescence (PLIF) and cavity ring-down (CRD) absorption spectroscopy is applied to map quantitatively the spatial distributions of CH2O and CH in a methane/air flame at 25 Torr. Both species are detected in the same spectral region using the overlapping CH2O A 1 A 2 -X 1 A 1 41 0 and CH B-X(1,0 )bands. The combination of diagnostic techniques exploits the spatial resolution of LIF and the quantitative CRD absorption measure of column density. The spatially resolved PLIF provides the distribution of absorbers and line-of-sight CRD absorption the absolute number density needed for quantitative concentration images. The peak CH2O concentration is (3.5±1.4 )×1014 cm-3, or 1450±550 ppm at 1000 K. The lack of precise absorption cross-section data produces these large error limits. Although a flame model predicts lower amounts, these large uncertainties limit this measurement’susefulness as a test of the flame chemistry. Received: 24 April 2001 / Revised version: 10 July 2001 / Published online: 10 October 2001  相似文献   

7.
The laser-induced fluorescence from [A2Δ(υ′ = 0)→X2Π(υ″ = 0)] band of the CH radical was studied in a low-pressure (20 torr) methane-oxygen flame (φ = 1.06). A time-resolved fluorescence technique was used to measure the relative CH concentration profile and the quenching of the A2Δ excited state through the flame. The pressure dependence of the quenching was also measured and used to determine an effective quenching cross section of 6 Å2 in the CH4-O2 flame. Analysis of the fluorescence spectra scanned at different delays after the laser excitation, according to a pseudo-three-level model, yields a rotational energy transfer (RET) rate in the A2Δ(υ′ = 0) electronic state which is a factor of four faster than the electronic quenching rate of 1.57 × 107 sec-1 in the flame at 2000 K.  相似文献   

8.
The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215–250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame (φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2–8×10?6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10?6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.  相似文献   

9.
Strategies for spatially resolved soot volume-fraction measurements have been investigated in sooting laboratory flames with known soot characteristics. Two techniques were compared: Laser-Induced Fluorescence in C2 from Laser-Vaporized Soot (LIF(C2)LVS), and Laser-Induced Incandescence of soot (LII). The LII signal is the increased temperature radiation from soot particles which have been heated to temperatures of several thousand degrees as a consequence of absorption of laser radiation. The LIF(C2)LVS technique is based on the production of C2 radicals from laser-vaporized soot which occurs for laser intensities ≥107 W/cm2. A laser wavelength is chosen such that besides vaporizizng the soot, it also excites the C2 radicals, and the subsequent C2 fluorescence signal is detected. The signals from both techniques showed good correlation with soot volume fractions in the studied flame. The dependence of the signals on experimental parameters was studied, and the influence of interfering radiation, such as background flame luminosity and fluorescence from polyaromatic hydrocarbons, on studied signals was established. The potential of the two techniques for imaging of soot volume fractions in laboratory flames was demonstrated. Advantages and disadvantages of the studied techniques are discussed.  相似文献   

10.
2 Σ+) was measured in a low-pressure H2/O2 flame for three rotational levels of OH (v=1). Rate coefficients for collisions with H2O and N2 were determined. At 1600 K, kVET (N2) is (in 10-11 cm3s-1) 10.1±2, 6.1±1.8, and 3.8±1.3 for N=0, 5, and 13, respectively. The kVET (H2O) is <1.1±1.8. The kQ (N2) is <2.4±8 for both vibrational levels. The kQ (H2O) in v=1 is 59.1±6.5, 54.7±6.4, and 54.9±6.6 for N=0, 5, and 13, respectively, and, determined indirectly, 74.6±10.4, 70.6±10.3, and 63.4±7.3 for N=0, 5, and 13 in v=0. A multi-level model of OH population dynamics, which is being developed for the quantitative simulation of experimental LIF spectra, was extended to include VET. It was attempted to simulate state-to-state-specific VET coefficients for N2 collisions. From these simulations it appears that angular momentum conservation does not determine the N dependence of the vibrational relaxation step. Received: 9 September 1996/Revised version: 6 January 1997  相似文献   

11.
The absolute, quantitative spatially resolved distribution of CH radicals was measured in the reaction zone of a low-pressure methane/air flame (25 Torr) using a combination of laser-induced fluorescence (LIF) and cavity ring-down (CRD) absorption spectroscopy operating on the A2–X2(0,0) transition. The spatially resolved 1-D image of LIF provides a direct measure of the CH distribution along the path of the laser beam in the CRD cavity. The temperature distribution was determined from measurements on a pair of rotational transitions. A series of LIF line images and CRD absorption measurements taken at various burner heights are combined to form a quantitative 2-D image of the CH distribution. This is used to interpret the CRD measurements along this inhomogeneous path. The 10 ppm peak CH concentration measured here on the centerline of the flame is in good agreement (within 15%) with earlier CH A–X LIF measurements calibrated by Rayleigh and Raman scattering. A 1-D LIF image collected simultaneously with CRD absorption was also used to quantify and optimize the spatial resolution of the CRD measurement. PACS 42.62.Fi; 82.33.Vx; 33.80.Gj  相似文献   

12.
The detailed influence of ferrocene in a low-pressure, fuel-rich, laminar, premixed propene/oxygen/argon flat flame was investigated experimentally using molecular beam sampling mass spectrometry (MBMS), laser-induced fluorescence (LIF), and compared to numerical simulations. MBMS was applied to analyze the species profiles of important intermediates in the flames with and without ferrocene doping. The concentration profile of iron atoms was measured with absorption sensitive LIF, which provides absolute number densities without additional calibrations. The flame temperature was obtained by two-line OH LIF measurements. One dimensional numerical simulations of the flames using detailed models from the literature were performed and the modeling results are compared with the experimental measurements. The iron measurements show reasonable agreement with the numerical simulation, while some discrepancies were found at larger heights. The MBMS measurements show a decrease in flame velocity when ferrocene was added, which was not provided by the model.  相似文献   

13.
This paper presents experimental evidence that using the KrF excimer laser for quantitative laser-induced fluorescence (LIF) studies of the OH A-X (3,0) system is highly problematic if the effects of both photobleaching and photochemistry are not included for laser spectral irradiances greater than 20 MW/cm2 cm-1. Pump-probe and time-resolved measurements of the OH LIF signal in an atmospheric pressure, premixed CH4-air flame at low- and high-laser-spectral-irradiance conditions show that a significant amount of OH is produced from photofragments resulting from the simultaneous 2-photon predissociation of H2O molecules in the C-X system. A 5+2-level rate-equation model that includes the effects of both photobleaching and photochemical OH production is shown to satisfactorily predict the data using a single adjustable parameter given by the effective, spectrally integrated 2-photon cross-section of H2O near 248 nm. The time-integrated OH LIF signal was found to depend on both the laser spectral irradiance and the local concentration of H2O. Additionally, use of the KrF excimer laser for 2-line rotational thermometry can produce temperature errors as great as +550 K at high laser-pulse energies. Received: 21 August 2000 / Revised version: 30 October 2000 / Published online: 21 February 2001  相似文献   

14.
Single-shot formaldehyde laser-induced fluorescence (LIF) imaging measurements in a technical scale turbulent flame have been obtained using XeF excimer laser excitation in the ?1A2-˜X1A1 transition at 353.2 nm. Measurements have been carried out in a 150 kW natural gas swirl burner where formaldehyde distribution fields have the potential, in combination with OH concentration fields, to visualize the heat release distribution and therefore give an optimal visualization of flame-front positions. The extended areas where formaldehyde was detected in the swirl flame indicates the presence of low temperature chemistry in preheated gas pockets before ignition. Received: 31 January 2000 / Revised version: 2 March 2000 / Published online: 5 April 2000  相似文献   

15.
Methylene, CH2, is a chemically important intermediate in hydrocarbon combustion but has previously eluded optical detection in a combustion environment. The CH2 signal as a function of height above the burner surface in a premixed, laminar, methane/oxygen flame (5.6 Torr and fuel equivalence ratio 1.05) is measured by laser-induced fluorescence (LIF) in the B 1 – ã1 A 1 electronic system. The ã state which lies 3165 cm–1 above the ground state is populated at the high temperatures of the flame (800–1800 K). Although less than one photon for each laser pulse is detected, we can unambiguously attribute the LIF features in the region 450 to 650 nm to CH2 by both scanning the excitation laser and dispersing fluorescence. LIF temperatures and CH and OH LIF concentration profiles are also obtained for the flame. The CH2 radical concentration maximum occurs closer to the burner than that of either OH or CH, as expected from models of methane combustion chemistry.  相似文献   

16.
A single-pulse spontaneous Raman scattering apparatus, based on a flashlamp-pumped dye laser, was used to determine the concentrations of the major species and the temperature in turbulent H2/N2/air jet diffusion flames. The concentrations of nitric oxide were simultaneously measured by Laser-Induced Fluorescence (LIF) after excitation of theA 2 +X 2 transition with a Nd: YAG-pumped dye laser. Some fundamentals of the employed methods, including the calibration procedure, quenching corrections, and accuracy are discussed. Besides a detailed study of the experimental technique, a main goal of the presented investigations was the generation of comprehensive data sets of high accuracy from well-defined turbulent flames which allow for a quantitative comparison with model calculations. Two flames with different fuel dilution and Reynolds numbers were investigated in a pattern of typically 100 measuring locations each comprising 300 single shots. In addition, four flames with different flow velocities but same fuel composition were compared with respect to their temperature and NO concentration profiles. The results show that differential diffusion plays an important role in these flames, especially near the flame base, where the temperature is increased above the adiabatic flame temperature and deviations from adiabatic equilibrium are large. The correlations between NO and mixture fraction and NO and temperature reveal characteristic features of the different flames.  相似文献   

17.
Intracavity absorption spectroscopy with a broadband Er3+-doped fiber laser is applied for the measurements of several molecular species revealing quantitative information about the gas concentration, temperature and chemical reactions in flames. The spectral range of measurements extends from 6200 cm−1 to 6550 cm−1 with the proper choice of the fiber length and by moving an intracavity lens. With a pulsed laser applied in this experiment, the sensitivity to absorption corresponds to an effective absorption path length of 3 km assuming the cavity is completely filled with the sample. For a cw laser, the effective absorption path length is estimated to be 50 km. Absorption spectra of various molecules such as CO2, CO, H2O, H2S, C2H2 and OH were recorded separately in the cell and/or in low-pressure methane and propane flames. The presented measurements demonstrate simultaneous in situ detection of three molecular products of chemical reactions at different flame locations. Variation of the relative strengths of OH absorption lines with the temperature enables the estimation of the local flame temperature. The sensitivity of this laser does not depend on the broadband cavity losses and it can be used for in situ measurements of absorption spectra in hostile environments such as contaminated samples, flames or combustion engines. The presented technique can be applied for various diagnostic purposes, such as in environmental, combustion and plasma research, in medicine and in the determination of stable isotope ratios.  相似文献   

18.
Two-photon laser-induced fluorescence (LIF) of ammonia (NH3) with excitation of the C′-X transition at 304.8 nm and fluorescence detection in the 565 nm C′-A band has been investigated, targeting combustion diagnostics. The impact of laser irradiance, temperature, and pressure has been studied, and simulation of NH3-spectra, fitted to experimental data, facilitated interpretation of the results. The LIF-signal showed quadratic dependence on laser irradiance up to 2 GW/cm2. Stimulated emission, resulting in loss of excited molecules, is induced above 10 GW/cm2, i.e., above irradiances attainable for LIF imaging. Maximum LIF-signal was obtained for excitation at the 304.8 nm bandhead; however, lower temperature sensitivity over the range 400–700 K can be obtained probing lines around 304.9 nm. A decrease in fluorescence signal was observed with pressure up to 5 bar absolute and attributed to collisional quenching. A detection limit of 800 ppm, at signal-to-noise ratio 1.5, was identified for single-shot LIF imaging over an area of centimeter scale, whereas for single-point measurements, the technique shows potential for sub-ppm detection. Moreover, high-quality NH3-imaging has been achieved in laminar and turbulent premixed flames. Altogether, two-photon fluorescence provides a useful tool for imaging NH3-detection in combustion diagnostics.  相似文献   

19.
ABSTRACT

On-line atom trapping inside a nickel flame furnace using chemical vapor generation for sample introduction was proposed for the determination of trace cadmium by flame atomic absorption spectrometry (AAS). Cadmium volatile species was generated upon reaction with potassium borohydride and then flushed into a flame furnace for on-line trapping by a flow of nitrogen carrier gas. The middle part of the flame furnace, where the carrier gas impacts, is cooled by the gas flow, and this provides a fine strategy for on-line atom trapping for the purpose of preconcentration. A stainless steel plate is put on the top of the flame burner in the middle to form a flame-free zone, which also greatly lowers the temperature of the flame furnace and facilitates the atom-trapping process. Due to the introduction of chemical vapor generation, matrix effect was greatly alleviated compared with direct pneumatic nebulization for on-line atom trapping in flame furnace AAS. With trapping time of 35 s, the current approach achieved an excellent limit of detection of 20 ng L?1. The proposed method was successfully applied for the quantification of cadmium in high-salinity samples.  相似文献   

20.
Temperature and OH concentrations derived from OH laser-induced fluorescence (LIF) are known to be susceptible to effects such as collisional quenching, laser absorption, and fluorescence trapping. In this paper, a set of analytical and easy-to-implement methods is presented for treating these effects. The significance of these signal corrections on inferred temperature and absolute OH concentration is demonstrated in an atmospheric-pressure, near-stoichiometric CH4-air flame stabilized on a Hencken burner, for laser excitation of both the A2Σ+←X2Π (0,0) and (1,0) bands. It is found that the combined effect of laser attenuation and fluorescence trapping can cause considerable error in the OH number density and temperature if not accounted for, even with A–X(1,0) excitation. The validity of the assumptions used in signal correction (that the excited-state distribution is either thermalized or frozen) is examined using time-dependent modeling of the ro-vibronic states during and after laser excitation. These assumptions are shown to provide good bounding approximations for treating transition-dependent issues in OH LIF, especially for an unknown collisional environment, and it is noted that the proposed methods are generally applicable to LIF-based measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号