首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we investigate the problem of partial synchronization in diffusively coupled chemical chaotic oscillators with zero-flux boundary conditions. The dynamical properties of the chemical system which oscillates with Uniform Phase evolution, yet has Chaotic Amplitudes (UPCA) are first discussed. By combining numerical and analytical methods, the impossibility of full global synchronization in a network of two or three coupled chemical oscillators is discovered. Mathematically, stable partial synchronization corresponds to convergence to a linear invariant manifold of the global state space. The sufficient conditions for exponential stability of the invariant manifold in a network of three coupled chemical oscillators are obtained via the nonlinear contraction principle.  相似文献   

2.
Effects of synchronization in a system of two coupled oscillators with time-delayed feedback are investigated. Phase space of a system with time delay is infinite-dimensional. Thus, the picture of synchronization in such systems acquires many new features not inherent to finite-dimensional ones. A picture of oscillation modes in cases of identical and non-identical coupled oscillators is studied in detail. Periodical structure of amplitude death and “broadband synchronization” zones is investigated. Such a behavior occurs due to the resonances between different modes of the infinite-dimensional system with time delay.  相似文献   

3.
This paper deals with the problem of control and synchronization of coupled second-order oscillators showing a chaotic behavior. A classical feedback controller is first used to stabilize the system at its equilibrium. An adaptive observer is then designed to synchronize the states of the master and slave oscillators using a single scalar signal corresponding to an observable state variable of the driving oscillator. An interesting feature of the proposed approach is that it can be used for chaos control as well as synchronization purposes. Numerical simulations results confirming the analytical predictions are shown and pspice simulations are also performed to confirm the efficiency of the proposed control scheme.  相似文献   

4.
The reliability of forecasts for chaotic motions varies with the state of the dynamical system. We define quantities that measure predictability and investigate their dependence on the initial state for different forecasting times. Two model systems are investigated, a driven damped pendulum and the Lorenz system. We use two different numerical methods to analyse the effect of finite resolution in determining the initial conditions on the reliability of forecasts. For the pendulum we also compare numerical forecasts with experimental data.  相似文献   

5.
The synchronization of two different chaotic oscillators is studied, based on an open-loop control – the entrainment control. We consider two types of synchronization: complete synchronization and effectively complete synchronization. The sufficient conditions that two different systems can be synchronized by this method is discussed. Furthermore, a hierarchical idea to synchronize multiple chaotic subsystems is proposed.  相似文献   

6.
A new model of coupled oscillators is proposed and investigated. All phase variables and parameters are integer-valued. The model is shown to exhibit two types of motions, those which involve periodic phase differences, and those which involve drift. Traditional dynamical concepts such as stability, bifurcation and chaos are examined for this class of integer-valued systems. Numerical results are presented for systems of two and three oscillators. This work has application in digital technology.  相似文献   

7.
We study the dynamics of a system of four coupled phase-only oscillators. This system is analyzed using phase difference variables in a phase space that has the topology of a three-dimensional torus. The system is shown to exhibit numerous phase-locked motions. The qualitative dynamics are shown to depend upon a parameter representing coupling strength. This work has application to MEMS artificial intelligence decision-making devices.  相似文献   

8.
9.
We present a detailed study of the dynamics of pulse oscillators with time-delayed coupling. We get the return maps, obtain strict solutions and analyze their stability. For the case of two oscillators, a periodical structure of synchronization regions is found in parameter space, and the regions corresponding to in-phase and antiphase regimes alternate with growth of time delay. Two types of switching between in-phase and antiphase regimes are studied. We also show that for different parameters coupling delay may have synchronizing or desynchronizing effect. Another novel result is that phase locked regimes exist for arbitrary large values. The specificity of system dynamics with large delay is studied.  相似文献   

10.
In this paper, the effect of spatial frequencies distributions on the oscillation death in a ring of coupled nonidentical oscillators is studied. We find that the rearrangement of the spatial frequencies may deform the domain of oscillation death and give rise to a ragged oscillation death in some parameter spaces. The usual critical curves with shape V in the parameter space of frequency-mismatch vs coupling-strength may become the shape W (or even shape WV). This phenomenon has been not only numerically observed in coupled nonidentical nonlinear systems, but also well supported by our theoretical analysis.  相似文献   

11.
12.
An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.  相似文献   

13.
By using the topological degree of Brouwer for mappings along with averaging method, we study the existence of forced periodic solutions for certain weakly coupled periodically perturbed ordinary differential equations.  相似文献   

14.
In this paper a general class of nonlinear impact oscillators is considered for Type II periodic motions. This system can be used to model an inverted pendulum impacting on rigid walls under external periodic excitation. The unperturbed system possesses a pair of homoclinic cycles and three separate families of periodic orbits inside and outside the homoclinic cycles via the identification given by the impact law. By approximating the Poincaré map to O(ε)O(ε) directly, a general method of Melnikov type for detecting the existence of asymmetric Type II subharmonic orbits outside the homoclinic cycles is presented.  相似文献   

15.
This paper addresses the design of simple state feedback controllers for synchronization and anti-synchronization of chaotic oscillators under input saturation and disturbance. By employing sector condition, linear matrix inequality (LMI)-based sufficient conditions are derived to design (global or local) controllers for chaos synchronization. The proposed local synchronization strategy guarantees a region of stability in terms of difference between states of the master–slave systems. This region of stability can be enlarged by means of an LMI-based optimization algorithm, through which asymptotic synchronization of chaotic oscillators can be ensured for a large difference in their initial conditions. Further, a novel LMI-based robust control strategy is developed, for local synchronization of input-constrained chaotic oscillators, by providing an upper bound on synchronization error in terms of disturbance and initial conditions of chaotic systems. Moreover, the proposed robust state feedback control methodology is modified to provide an inaugural treatment for robust anti-synchronization of chaotic systems under input saturation and disturbance. The results of the proposed methodologies are verified through numerical simulations for synchronization and anti-synchronization of the master–slave chaotic Chua’s circuits under input saturation.  相似文献   

16.
We study the synchronization of N nearest neighbors coupled oscillators in a ring. We derive an analytic form for the phase difference among neighboring oscillators which shows the dependency on the periodic boundary conditions. At synchronization, we find two distinct quantities which characterize four of the oscillators, two pairs of nearest neighbors, which are at the border of the clusters before total synchronization occurs. These oscillators are responsible for the saddle node bifurcation, of which only two of them have a phase-lock of phase difference equals ± π/2. Using these properties we build a technique based on geometric properties and numerical observations to arrive to an exact analytic expression for the coupling strength at full synchronization and determine the two oscillators that have a phase-lock condition of ± π/2.  相似文献   

17.
The coupling of two identical B-Z oscillators is examined. The coupling, unlike previous work, is only via the cerium component. Formation of spatial and temporal inhomogeneities is found. Transitions from the spatially homogeneous steady state to the inhomogeneous one, and then to the spatially homogeneous one and inhomogeneous oscillations are reported as a function of the coupling rate and the stoichiometric factor. The feasibility of experimental verification of these results and the biological and ecological implications are discussed.  相似文献   

18.
We introduce a mathematical model of a continual circular chain of unidirectionally coupled oscillators. It is a nonlinear hyperbolic boundary value problem obtained from a circular chain of unidirectionally coupled ordinary differential equations in the limit as the number of equations indefinitely increases. We study the attractors of this boundary value problem. Combining analytic and numerical methods, we establish that one of the following two alternatives takes place in this problem: either the buffer phenomenon (unbounded accumulation of stable periodic motions) or chaotic attractors of arbitrarily high Lyapunov dimensions.  相似文献   

19.
By coupling counter-rotating coupled nonlinear oscillators, we observe a “mixed” synchronization between the different dynamical variables of the same system. The phenomenon of amplitude death is also observed. Results for coupled systems with co-rotating coupled oscillators are also presented for a detailed comparison. Results for Landau–Stuart and Rössler oscillators are presented.  相似文献   

20.
Weakly coupled chains of oscillators with nearest-neighbor interactions are analyzed for phaselocked solutions. It is shown that the symmetry properties of the coupling affect the qualitative form of the phaselocked solutions and the scaling behavior of the system as the number of oscillators grows without bound. It is also shown that qualitative behavior of these solutions depends on whether the coupling is “diffusive” or “I synaptic”. terms defined in the paper. The methods include the demonstration that the equations for phaselocked solutions can be approximated by a singularly perturbed two-point (continuum) boundary value problem that is easier to analyze; the issue of convergence of the phaselocked solutions to solutions of the continuum equation is closely related to questions involving numerical entropy in computation schemes for a conservation law. An application to the neurophysiology of motor behavior is discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号